[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Binary and Ternary Classifiers to Detect COVID-19 Patients Using Chest X-ray Images: An Efficient Layered CNN Approach

  • Research Paper
  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract

Coronavirus disease 2019, i.e., COVID-19, an emerging contagious disease with human-to-human transmission, first appeared at the end of year 2019. The sudden demand for disease diagnostic kits prompted researchers to shift their focus toward developing solutions that could assist in identifying COVID-19 using available resources. Therefore, it is imperative to develop a high-accuracy system that makes use of Artificial Intelligence and its tools considering its contribution to computer vision. The time consumed to diagnose test outcomes is to be taken care of as a crucial aspect of an efficient model. To address the global challenges faced by the COVID-19 pandemic, this study proposed two deep learning models developed for automatic COVID-19 detection and distinguish it from pneumonia, another common lung disease. The proposed designs implement layered convolutional neural networks and are trained on a data set of 1824 chest X-rays for binary classification (COVID-19 and normal) and 2736 chest X-rays for ternary classification (COVID-19, normal, and pneumonia). The input images and hyper-parameters in the convolution layers are fine-tuned during the model training phase. The observations show that the proposed models have achieved a better performance as compared to their earlier contemporaries’ approaches, resulting in accuracy, precision, recall, and F-score of 98.91%, 98.5%, 98.5%, and 99% for binary-class and 95.99%, 96.3%, 96%, and 96.33% for ternary-class classifiers, respectively. The presented architectures have been built from scratch, thus with the implemented convolutional layered architecture, they were successful in providing more efficient and early diagnosis of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The dataset analyzed during the current study is publicly available at Mendeley Data (https://data.mendeley.com/datasets/2fxz4px6d8/4).

References

  1. Agrawal, M., Saraf, S., Saraf, S., Murty, U.S., Kurundkar, S.B., Roy, D., Joshi, P., Sable, D., Choudhary, Y.K., Kesharwani, P., Alexander, A.: In-line treatments and clinical initiatives to fight against COVID-19 outbreak. Respir. Med. 191(106192), 1–21 (2022)

    Google Scholar 

  2. Wang, C., Horby, P.W., Hayden, F.G., Gao, G.F.: A novel coronavirus outbreak of global health concern. The Lancet 395(10223), 470–473 (2020)

    Google Scholar 

  3. Jiang, S., Shi, Z., Shu, Y., Song, J., Gao, G.F., Tan, W., Guo, D.: A distinct name is needed for the new coronavirus. The Lancet 395(10228), 949 (2020)

    Google Scholar 

  4. Cheng, X., Cao, Q., Liao, S.S.: An overview of literature on COVID-19 MERS and SARS: using text mining and latent Dirichlet allocation. J. Inf. Sci. 48(3), 304–320 (2022)

    Google Scholar 

  5. WHO Coronavirus Disease (COVID-19) Dashboard. [Online]. Available: https://covid19.who.int/. Accessed 20 Jan 2023

  6. Tao, A., Zhenlu, Y., Hongyan, H., Chenao, Z., Chong, C., Wenzhi, L., Qian, T., Ziyong, S., Liming, X.: Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology 296(2), 1–23 (2020)

    Google Scholar 

  7. Vinod, D.N., Prabaharan, S.R.S.: COVID-19-the role of artificial intelligence, machine learning, and deep learning: a newfangled. Arch. Comput. Methods Eng. 30(4), 2667–2682 (2023)

    Google Scholar 

  8. Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., Bai, J., Lu, Y., Fang, Z., Song, Q., Cao, K., Liu, D., Wang, G., Xu, Q., Fang, X., Zhang, S., Xia, J., Xia, J.: Using artificial intelligence to detect Covid-19 and community-acquired pneumonia based on pulmonary CT: evaluation of the diagnostic accuracy. Radiology 296(2), E65-E71 (2020). https://doi.org/10.1148/radiol.2020200905

    Article  Google Scholar 

  9. Holshue, M.L., DeBolt, C., Lindquist, S., Lofy, K.H., Wiesman, J., Bruce, H., Spitters, C., Ericson, K., Wilkerson, S., Tural, A., Diaz, G., Cohn, A., Fox, L.A., Patel, A., Gerber, S.I., Kim, L., Tong, S., Lu, X., Lindstrom, S., Pallansch, M.A., Weldon, W.C., Biggs, H.M., Uyeki, T.M., Pillai, S.K.: First case of 2019 novel coronavirus in the United States. N. Engl. J. Med. 382(10), 929–936 (2020)

    Google Scholar 

  10. Mehta, V., Jyoti, D., Guria, R.T., Sharma, C.B.: Correlation between chest CT and RT-PCR testing in India’s second COVID-19 wave: a retrospective cohort study. BMJ Evid.-Based Med. 27(5), 305–312 (2020)

    Google Scholar 

  11. Chung, M., Bernheim, A., Mei, X., Zhang, N., Huang, M., Zeng, X., Cui, J., Xu, W., Yang, Y., Fayad, Z.A., Jacobi, A., Li, K., Li, S., Shan, H.: CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV). Radiology 295(1), 202–207 (2020)

    Google Scholar 

  12. Sujatha, R., Chatterjee, J.M., Angelopoulou, A., Kapetanios, E., Srinivasu, P.N., Hemanth, D.J.: A transfer learning-based system for grading breast invasive ductal carcinoma. IET Image Proc. 17(7), 1979–1990 (2023)

    Google Scholar 

  13. Lorente, E.: COVID-19 pneumonia - evolution over a week (2020). [Online]. Available: https://radiopaedia.org/cases/covid-19-pneumonia-evolution-over-a-week-1. Accessed 13 Jan 2024

  14. Mittal, A., Kumar, D., Mittal, M., Saba, T., Abunadi, I., Rehman, A., Roy, S.: Detecting pneumonia using convolutions and dynamic capsule routing for chest X-ray images. Sensors 20(4), 1–30 (2020)

    Google Scholar 

  15. Iftikhar, H., Khan, M., Khan, M.S., Khan, M.: Short-term forecasting of Monkeypox cases using a novel filtering and combining technique. Diagnostics 13(11), 1923–1940 (2023)

    Google Scholar 

  16. Iftikhar, H., Daniyal, M., Qureshi, M., Tawiah, K., Ansah, R.K., Afriyie, J.K.: A hybrid forecasting technique for infection and death from the mpox virus. Digital Health 9, 1–17 (2023)

    Google Scholar 

  17. Alshanbari, H.M., Iftikhar, H., Khan, F., Rind, M., Ahmad, Z., El-Bagoury, A.A.H.: On the implementation of the artificial neural network approach for forecasting different healthcare events. Diagnostics 13(7), 1310–1326 (2023)

    Google Scholar 

  18. Iftikhar, H., Rind, M.: Forecasting daily COVID-19 confirmed, deaths and recovered cases using univariate time series models: a case of Pakistan study. MedRxiv 9, 283 (2020)

    Google Scholar 

  19. Ozturk, T., Talo, M., Yildirim, E.A., Baloglu, U.B., Yildirim, O., Rajendra Acharya, U.: Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med. 121, 103792 (2020)

    Google Scholar 

  20. Apostolopoulos, I.D., Mpesiana, T.A.: Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Phys. Eng. Sci. Med. 43(2), 635–640 (2020)

    Google Scholar 

  21. Karim, M.R., Döhmen, T., Cochez, M., Beyan, O., Rebholz-Schuhmann, D., Decker, S.: DeepCOVIDExplainer: Explainable COVID-19 Diagnosis from Chest X-ray Images. In: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Seoul, Korea (South), pp 1034–1037 (2020)

  22. Ghoshal, B., Tucker, A.: Estimating Uncertainty and Interpretability in Deep Learning for Coronavirus (COVID-19) Detection. arXiv:2003.10769, (2020)

  23. Narin, A., Kaya, C., Pamuk, Z.: Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. arXiv:2003.10849, (2020)

  24. Hemdan, E.E.-D., Shouman, M.A., Karar, M.E.: COVIDX-Net: a framework of deep learning classifiers to diagnose COVID-19 in X-ray images. arXiv:2003.11055, (2020)

  25. Hall, L.O., Paul, R., Goldgof, D.B., Goldgof, G.M.: Finding Covid-19 from chest X-rays using deep learning on a small dataset. arXiv:2004.02060, (2020)

  26. Wang, S., Kang, B., Ma, J., Zeng, X., Xiao, M., Guo, J., Cai, M., Yang, J., Li, Y., Meng, X., Xu, B.: A deep learning algorithm using CT images to screen for corona virus disease (COVID-19). Medrxiv 5, 1451 (2020)

    Google Scholar 

  27. Xu, X., Jiang, X., Ma, C., Du, P., Li, X., Lv, S., Yu, L., Chen, Y., Su, J., Lang, G., Li, Y., Zhao, H., Xu, K., Ruan, L., Wu, W.: Deep learning system to screen coronavirus disease 2019 pneumonia. Appl. Intell. 6(10), 1122–1129 (2020)

    Google Scholar 

  28. Mishra, A.K., Das, S.K., Roy, P., Bandyopadhyay, S.: Identifying COVID19 from chest CT images: a deep convolutional neural networks based approach. J. Healthc. Eng. 2020, 1–7 (2020)

    Google Scholar 

  29. Osman, A.H., Aljahdali, H.M., Altarrazi, S.M., Ahmed, A.: SOM-LWL method for identification of COVID-19 on chest X-rays. PLoS ONE 16, e0247176 (2021)

    Google Scholar 

  30. Mohammad-Rahimi, H., Nadimi, M., Ghalyanchi-Langeroudi, A., Taheria, M., Ghafouri-Fard, S.: Application of machine learning in diagnosis of COVID-19 through X-ray and CT images: a scoping review. Front. Cardiovasc. Med. 8, 638011 (2021)

    Google Scholar 

  31. Low, W.C.S., Chuah, J.H., Tee, C.A.T.H., Anis, S., Shoaib, M.A., Faisal, A., Khalil, A., Lai, K.W.: An overview of deep learning techniques on chest X-ray and CT scan identification of COVID-19. Comput. Math. Methods Med. 2021, 17 (2021)

    Google Scholar 

  32. Nayak, S.R., Nayak, D.R., Sinha, U., Arora, V., Pachori, R.B.: Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: a comprehensive study. Biomed. Signal Process. Control 64, 1–12 (2021)

    Google Scholar 

  33. Akter, S., Shamrat, F.M.J.M., Chakraborty, S., Karim, A., Azam, S.: COVID-19 detection using deep learning algorithm on chest X-ray images. Biology 10(11), 1174 (2021)

    Google Scholar 

  34. Attallah, O.: ECG-BiCoNet: An ECG-based pipeline for COVID-19 diagnosis using bi-layers of deep features integration. Comput. Biol. Med. 142, 105210 (2022)

    Google Scholar 

  35. Karim, A.M., Kaya, H., Alcan, V., Sen, B., Hadimlioglu, I.A.: New optimized deep learning application for COVID-19 detection in chest X-ray images. Symmetry 14(5), 1003–1020 (2022)

    Google Scholar 

  36. Nasiri, H., Hasani, S.: Automated detection of COVID-19 cases from chest X-ray images using deep neural network and XGBoost. Radiography 28(3), 732–738 (2022)

    Google Scholar 

  37. Nahiduzzaman, M., Islam, M.R., Hassan, R.: ChestX-ray6: Prediction of multiple diseases including COVID-19 from chest X-ray images using convolutional neural network. Expert Syst. Appl. 211, 118576 (2023)

    Google Scholar 

  38. Gaur, L., Bhatia, U., Jhanjhi, N.Z., Muhammad, G., Masud, M.: Medical image-based detection of COVID-19 using deep convolution neural networks. Multimedia Syst. 29(3), 1729–1738 (2023)

    Google Scholar 

  39. Chow, L.S., Tang, G.S., Solihin, M.I., Gowdh, N.M., Ramli, N., Rahmat, K.: Quantitative and Qualitative Analysis of 18 Deep Convolutional Neural Network (CNN) Models with Transfer Learning to Diagnose COVID-19 on Chest X-Ray (CXR) Images. SN Computer Science 4(2), 141 (2023)

    Google Scholar 

  40. Alqudah, A.M., & Qazan, S.: Augmented COVID-19 X-ray Images Dataset, Mendeley Data, (2020)

  41. Cohen, J.P.: covid-chestxray-dataset (2020). [Online]. https://github.com/ieee8023/COVID-chestxray-dataset. Accessed 15 Jan 2024

  42. Mooney, P.: Chest X-ray Images (Pneumonia). kaggle (2020)

    Google Scholar 

  43. Iftikhar, H., Khan, M., Khan, Z., Khan, F., Alshanbari, H.M., Ahmad, Z.: A comparative analysis of machine learning models: a case study in predicting chronic kidney disease. Sustainability 15(3), 2754–2766 (2023)

    Google Scholar 

  44. Iftikhar, H., Zafar, A., Turpo-Chaparro, J.E., Rodrigues, P.C., López-Gonzales, J.L.: Forecasting day-ahead brent crude oil prices using hybrid combinations of time series models. Mathematics 11(16), 3548–3566 (2023)

    Google Scholar 

  45. Kermany, D., Zhang, K., Goldbaum, M.: Labeled optical coherence tomography (OCT) and chest x-ray images for classification. Mendeley Data 2(2), 651 (2018). https://doi.org/10.17632/rscbjbr9sj.2

    Article  Google Scholar 

  46. Monshi, M.M.A., Poon, J., Chung, V.: Convolutional Neural Network to Detect Thorax Diseases from Multi-view Chest X-rays, pp. 148–158. Springer International Publishing, Cham (2019)

    Google Scholar 

  47. Singh, B., Patel, S., Vijayvargiya, A., Kumar, R.: Analyzing the impact of activation functions on the performance of the data-driven gait model. Results Eng. 18, 101029 (2023)

    Google Scholar 

  48. Dubey, S.R., Singh, S.K., Chaudhuri, B.B.: Activation functions in deep learning: A comprehensive survey and benchmark. Neurocomputing 503, 92–108 (2022)

    Google Scholar 

  49. Chaturvedi, A., Apoorva, N., Awasthi, M.S., Jyoti, S., Akarsha, D.P., Brunda, S., Soumya, C.S.: Analyzing the performance of novel activation functions on deep learning architectures. In: Emerging Research in Computing, Information, Communication and Applications: Proceedings of ERCICA 2022, Singapore: Springer Nature Singapore, pp. 903–915 (2022)

  50. Sathi, S., Tiwari, R., Verma, S., Garg, A.K., Saini, V.S., Singh, M.K., Mittal, A., Vohra, D.: Role of chest X-ray in coronavirus disease and correlation of radiological features with clinical outcomes in Indian patients. Can. J. Infect. Dis. Med. Microbiol. 2021(6326947), 1–8 (2021)

    Google Scholar 

  51. Marginean, C.M., Popescu, M., Vasile, C.M., Cioboata, R., Mitrut, P., Popescu, I.A.S., Biciusca, V., Docea, A.O., Mitrut, R., Marginean, I.C., Neagoe, D.: Challenges in the differential diagnosis of COVID-19 pneumonia: a pictorial review. Diagnostics 12(11), 2823 (2022)

    Google Scholar 

  52. Shah, I., Iftikhar, H., Ali, S., Wang, D.: Short-term electricity demand forecasting using components estimation technique. Energies 12(13), 2532–2548 (2019)

    Google Scholar 

  53. Shah, I., Iftikhar, H., Ali, S.: Modeling and forecasting electricity demand and prices: a comparison of alternative approaches. J. Math. 3581037, 1–14 (2022)

    Google Scholar 

  54. Iftikhar, H., Bibi, N., Rodrigues, P.C., López-Gonzales, J.L.: Multiple novel decomposition techniques for time series forecasting: application to monthly forecasting of electricity consumption in Pakistan. Energies 16(6), 2579–2595 (2023)

    Google Scholar 

  55. Chauhan, N.K., Singh, K., Kumar, A., Kolambakar, S.B.: HDFCN: A Robust Hybrid Deep Network Based on Feature Concatenation for Cervical Cancer Diagnosis on WSI Pap Smear Slides. BioMed Res. Int. 4214817, 1–17 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Jude Hemanth.

Ethics declarations

Conflict of Interest

The authors declare that they do not have any conflict of interest. This research did not involve any human or animal participation. All authors have checked and agreed on the submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, M., Chauhan, N.K., Ghansiyal, A. et al. Binary and Ternary Classifiers to Detect COVID-19 Patients Using Chest X-ray Images: An Efficient Layered CNN Approach. New Gener. Comput. 42, 715–737 (2024). https://doi.org/10.1007/s00354-024-00254-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00354-024-00254-5

Keywords

Navigation