[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Geometric View on the Generalized Proudman–Johnson and r-Hunter–Saxton Equations

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

A Correction to this article was published on 29 June 2023

This article has been updated

Abstract

We show that two families of equations, the generalized inviscid Proudman–Johnson equation and the r-Hunter–Saxton equation (recently introduced by Cotter et al.), coincide for a certain range of parameters. This gives a new geometric interpretation of these Proudman–Johnson equations as geodesic equations of right invariant homogeneous \(W^{1,r}\)-Finsler metrics on the diffeomorphism group. Generalizing a construction of Lenells for the Hunter–Saxton equation, we analyze these equations using an isometry from the diffeomorphism group to an appropriate subset of real-valued functions. Thereby, we show that the periodic case is equivalent to the geodesic equations on the \(L^r\)-sphere in the space of functions, and the non-periodic case is equivalent to a geodesic flow on a flat space. This allows us to give explicit solutions to these equations in the non-periodic case, and answer several questions of Cotter et al. regarding their limiting behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Change history

Notes

  1. See also Escher and Kolev (2011) for a similar interpretation of the b-equations, which include the Camassa–Holm and the Degasperis–Procesi equation.

  2. For \(\uplambda =0\), the integrability of the periodic \(\uplambda \)-PJ equation is shown in the article (Lenells and Misiołek 2014). This proof translates directly to the non-periodic case.

  3. It was also used as a tool for studying the diameter of diffeomorphism groups (Bauer and Maor 2020).

References

  • Arnold, V.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Annales de l’institut Fourier 16(1), 319–361 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  • Arnold, V.I., Khesin, B.A.: Topological Methods in Hydrodynamics, vol. 125. Springer, Berlin (1999)

    MATH  Google Scholar 

  • Bauer, M., Maor, C.: Can we run to infinity? The diameter of the diffeomorphism group with respect to right-invariant Sobolev metrics. to appear in Calc. Var. and PDEs (2020)

  • Bauer, M., Bruveris, M., Michor, P.W.: Homogeneous Sobolev metric of order one on diffeomorphism groups on real line. J. Nonlinear Sci. 24(5), 769–808 (2014a)

    Article  MATH  MathSciNet  Google Scholar 

  • Bauer, M., Bruveris, M., Michor, P.W.: Overview of the geometries of shape spaces and diffeomorphism groups. J. Math. Imaging Vis. 50(1–2), 60–97 (2014b)

    Article  MATH  MathSciNet  Google Scholar 

  • Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Constantin, P., Lax, P.D., Majda, A.: A simple one-dimensional model for the three-dimensional vorticity equation. Commun. Pure Appl. Math. 38(6), 715–724 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  • Cotter, C.J., Deasy, J., Pryer, T.: The r-Hunter-Saxton equation, smooth and singular solutions and their approximation. Nonlinearity 33(12), 7016 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  • Escher, J., Kolev, B.: The Degasperis–Procesi equation as a non-metric Euler equation. Math. Z. 269(3–4), 1137–1153 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Escher, J., Kolev, B., Wunsch, M.: The geometry of a vorticity model equation. Commun. Pure Appl. Anal. 11(4), 1407 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Gibilisco, P.: \(L^p\) unit spheres and the \(\alpha \)-geometries: questions and perspectives. Entropy 22(12), 1409 (2020)

    Article  MathSciNet  Google Scholar 

  • Hunter, J.K., Saxton, R.: Dynamics of director fields. SIAM J. Appl. Math. 51(6), 1498–1521 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  • Kogelbauer, F.: On the global well-posedness of the inviscid generalized Proudman–Johnson equation using flow map arguments. J. Differ. Equ. 268(3), 1050–1080 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  • Kouranbaeva, S.: The Camassa–Holm equation as a geodesic flow on the diffeomorphism group. J. Math. Phys. 40(2), 857–868 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Kriegl, A., Michor, P.W., Rainer, A.: An exotic zoo of diffeomorphism groups on \({\mathbb{R}}^n\). Ann. Glob. Anal. Geom. 47(2), 179–222 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  • Lenells, J.: The Hunter-Saxton equation describes the geodesic flow on a sphere. J. Geom. Phys. 57(10), 2049–2064 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Lenells, J.: The Hunter–Saxton equation: a geometric approach. SIAM J. Math. Anal. 40(1), 266–277 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Lenells, J., Misiołek, G.: Amari–Chentsov connections and their geodesics on homogeneous spaces of diffeomorphism groups. J. Math. Sci. 196(2), 144–151 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  • Marquis, T., Neeb, K.-H.: Half-Lie groups. Transform. Groups 23(3), 801–840 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  • Michor, P.W., Mumford, D.: A zoo of diffeomorphism groups on \({\mathbb{R}}^n\). Ann. Glob. Anal. Geom. 4(44), 529–540 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Misiołek, G.: A shallow water equation as a geodesic flow on the Bott–Virasoro group. J. Geom. Phys. 24(3), 203–208 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Okamoto, H., Zhu, J.: Some similarity solutions of the Navier–Stokes equations and related topics. Taiwan. J. Math. 4(1), 65–103 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Omori, H.: On the group of diffeomorphisms on a compact manifold. In: Proceedings of the Symposium on the Pure and Applied Mathematics, XV, Amer. Math. Soc, pp. 167–183 (1970)

  • Ovsienko, V.Y., Khesin, B.A.: Korteweg–de Vries superequation as an Euler equation. Funct. Anal. Appl. 21(4), 329–331 (1987)

    Article  MATH  Google Scholar 

  • Sarria, A., Saxton, R.: Blow-up of solutions to the generalized inviscid Proudman–Johnson equation. J. Math. Fluid Mech. 15(3), 493–523 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Vizman, C., et al.: Geodesic equations on diffeomorphism groups. Symmetry Integr. Geom. Methods Appl. 4, 030 (2008)

    MATH  MathSciNet  Google Scholar 

  • Wunsch, M.: On the geodesic flow on the group of diffeomorphisms of the circle with a fractional Sobolev right-invariant metric. J. Nonlinear Math. Phys. 17(1), 7–11 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Wunsch, M.: The generalized Proudman–Johnson equation revisited. J. Math. Fluid Mech. 13(1), 147–154 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to S. Preston and G. Misiołek for various discussions during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bauer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

M. Bauer was partially supported by NSF-Grants 1912037 and 1953244. Y. Lu was partially supported by NSF-Grant 1912037. C. Maor was partially supported by ISF-Grant 1269/19.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, M., Lu, Y. & Maor, C. A Geometric View on the Generalized Proudman–Johnson and r-Hunter–Saxton Equations. J Nonlinear Sci 32, 17 (2022). https://doi.org/10.1007/s00332-021-09775-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-021-09775-5

Mathematics Subject Classification