[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Navier–Stokes–Voigt Equations with Memory in 3D Lacking Instantaneous Kinematic Viscosity

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We consider a Navier–Stokes–Voigt fluid model where the instantaneous kinematic viscosity has been completely replaced by a memory term incorporating hereditary effects, in presence of Ekman damping. Unlike the classical Navier–Stokes–Voigt system, the energy balance involves the spatial gradient of the past history of the velocity rather than providing an instantaneous control on the high modes. In spite of this difficulty, we show that our system is dissipative in the dynamical systems sense and even possesses regular global and exponential attractors of finite fractal dimension. Such features of asymptotic well-posedness in absence of instantaneous high modes dissipation appear to be unique within the realm of dynamical systems arising from fluid models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models. Springer, New York (2013)

    Book  MATH  Google Scholar 

  • Chepyzhov, V.V., Vishik, M.I.: Non-autonomous 2D Navier–Stokes system with singularly oscillating external force and its global attractor. J. Dyn. Differ. Equ. 19, 655–684 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Chepyzhov, V.V., Pata, V., Vishik, M.I.: Averaging of 2D Navier–Stokes equations with singularly oscillating forces. Nonlinearity 22, 351–370 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Chepyzhov, V., Vishik, M., Zelik, S.: Strong trajectory attractors for dissipative Euler equations. J. Math. Pure Appl. 96, 395–407 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Chepyzhov, V.V., Conti, M., Pata, V.: Averaging of equations of viscoelasticity with singularly oscillating external forces. arXiv:1607.02732 (2017)

  • Constantin, P., Ramos, F.: Inviscid limit for damped and driven incompressible Navier–Stokes equations in $\mathbb{R}^2$. Commun. Math. Phys. 275, 529–551 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Conti, M., Danese, V., Giorgi, C., Pata, V.: A model of viscoelasticity with time-dependent memory kernels. Am. J. Math. arXiv:1603.07164 (2016)

  • Conti, M., Pata, V., Squassina, M.: Singular limit of differential systems with memory. Indiana Univ. Math. J. 55, 169–215 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Coti Zelati, M., Gal, C.G.: Singular limits of Voigt models in fluid dynamics. J. Math. Fluid Mech. 17, 233–259 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Dafermos, C.M.: Asymptotic stability in viscoelasticity. Arch. Rat. Mech. Anal. 37, 297–308 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  • Danese, V., Geredeli, P.G., Pata, V.: Exponential attractors for abstract equations with memory and applications to viscoelasticity. Discrete Contin. Dyn. Syst. 35, 2881–2904 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Gal, C.G., Tachim-Medjo, T.: A Navier–Stokes–Voigt model with memory. Math. Method Appl. Sci. 36, 2507–2523 (2013)

    Article  MATH  Google Scholar 

  • Gatti, S., Giorgi, C., Pata, V.: Navier–Stokes limit of Jeffreys type flows. Phys. D 203, 55–79 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Gatti, S., Miranville, A., Pata, V., Zelik, S.: Continuous families of exponential attractors for singularly perturbed equations with memory. Proc. R. Soc. Edinb. Sect. A 140, 329–366 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Grasselli, M., Pata, V.: Uniform attractors of nonautonomous systems with memory. In: Lorenzi, A., Ruf, B. (eds.) Evolution Equations, Semigroups and Functional Analysis, Progr. Nonlinear Differential Equations Appl. No. 50, pp. 155–178. Birkhäuser, Boston (2002)

    Chapter  Google Scholar 

  • Ilyin, A.A., Miranville, A., Titi, E.S.: Small viscosity sharp estimates for the global attractor of the 2D damped-driven Navier–Stokes equations. Commun. Math. Sci 2, 403–425 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Kalantarov, V.K., Titi, E.S.: Global attractors and determining modes for the 3D Navier–Stokes–Voigt equations. Chin. Ann. Math. Ser. B 30, 697–714 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Larios, A., Titi, E.S.: On the higher-order global regularity of the inviscid Voigt-regularization of three-dimensional hydrodynamic models. Discrete Contin. Dyn. Syst. B 14, 603–627 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  • Oskolkov, A.P.: The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers. Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 38, 98–136 (1973)

    MathSciNet  Google Scholar 

  • Pata, V.: Exponential stability in linear viscoelasticity. Q. Appl. Math. 64, 499–513 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Pata, V.: Uniform estimates of Gronwall type. J. Math. Anal. Appl. 373, 264–270 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Pata, V., Zucchi, A.: Attractors for a damped hyperbolic equation with linear memory. Adv. Math. Sci. Appl. 11, 505–529 (2001)

    MathSciNet  MATH  Google Scholar 

  • Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  • Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1987)

    Book  MATH  Google Scholar 

  • Qin, Y., Yang, X., Liu, X.: Averaging of a 3D Navier–Stokes–Voigt equation with singularly oscillating forces. Nonlinear Anal. Real World Appl. 13, 893–904 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Straughan, B.: Stability and Wave Motion in Porous Media. Springer, New York (2008)

    MATH  Google Scholar 

  • Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1997)

    Book  MATH  Google Scholar 

  • Temam, R.: Navier–Stokes Equations. AMS Chelsea Publishing, Providence (2001)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

F. Di Plinio was partially supported by the National Science Foundation under the Grant Nos. NSF-DMS-1500449 and NSF-DMS-1650810. R. Temam was supported by NSF DMS Grant 1510249 and by the Research Fund of Indiana University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Di Plinio.

Additional information

Communicated by Edriss S. Titi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Plinio, F., Giorgini, A., Pata, V. et al. Navier–Stokes–Voigt Equations with Memory in 3D Lacking Instantaneous Kinematic Viscosity. J Nonlinear Sci 28, 653–686 (2018). https://doi.org/10.1007/s00332-017-9422-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-017-9422-1

Keywords

Mathematics Subject Classification

Navigation