[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Random Sequences with Respect to a Measure Defined by Two Linear Fractional Transformations

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We define a probability measure on the Cantor space by using two linear fractional transformations consisting of computable real numbers. The measure can be a non-product measure on the Cantor space, on the other hand, it can also be the Bernoulli measure. We consider the constructive dimensions for the points which are random with respect to the measure. We examine limit frequencies of the outcome of 0 for such random points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In [9], Lutz defined constructive dimension by using supergales instead of gales. Fenner [5] and Hitchcock [6] showed that gales can be used to define the dimension.

References

  1. Azuma, K.: Weighted sums of certain random variables. Tôhoku Math. J. 19(2), 357–367 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chaitin, G.J.: A theory of program size formally identical to information theory. J. Assoc. Comput. Mach. 22, 329–340 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  3. De Rham, G.: Sur quelques courbes définies par des équations fonctionalles. Univ. e Politec. Torino. Rend. Sem. Mat. 16, 101–113 (1957)

    MathSciNet  Google Scholar 

  4. Downey, R.G., Hirschfeldt, D.R.: Algorithmic randomness and Complexity. Springer, New York (2010)

    Book  MATH  Google Scholar 

  5. Fenner, S.A.: Gales and Supergales are Equivalent for Defining Constructive Hausdorff Dimension, available at arXiv:0208044

  6. Hitchcock, J.M.: Gales suffice for constructive dimension. Inform. Process. Lett. 86, 9–12 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Probl. Inf. Transm. 1, 1–7 (1965)

    Google Scholar 

  8. Levin, L.A.: On the notion of a random sequence. Sov. Math. Dokl. 14, 1413–1416 (1973)

    MATH  Google Scholar 

  9. Lutz, J.H.: The dimensions of individual strings and sequences. Inform. and Comput. 187, 49–79 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lutz, J.H., Mayordomo, E.: Dimension of points in self-similar fractals. SIAM J. Comput. 38, 1080–1112 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Martin-Löf, P.: The definition of random sequences. Inf. Control. 9, 602–619 (1966)

    Article  MATH  Google Scholar 

  12. Nandakumar, S.: A characterization of constructive dimension. Math. Log. Q. 55, 271–286 (2009)

    Article  MathSciNet  Google Scholar 

  13. Okamura, K.: Singularity results for functional equations driven by linear fractional transformations. to appear in J. Theor. Probab., available at arXiv:1205.3632

  14. Okamura, K.: On the range of self-interacting random walks on an integer interval. Tsukuba J. Math. 38, 123–135 (2014)

  15. Reiman, J., Stephan, F.: Hierarchies of randomness tests, mathematical logic Asia, pp. 215–232. World Sci. Publ., Hackensack (2006)

  16. Schnorr, C.P.: A unified approach to the definition of random sequences. Math. Syst. Theory 5, 246–258 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  17. Staiger, L.: Rich ω-words and monadic second-order arithmetic, computer science logic (Aarhus 1997). Lecture Notes in Computer Science, vol. 1414, pp. 478–490, Springer, Berlin (1998)

  18. Staiger, L.: Constructive dimension equals Kolmogorov complexity. Inform. Process. Lett. 93, 149–153 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Zvonkin, A.K., Levin, L.A.: The complexity of finite objects and the basing of the concepts of information and randomness on the theory of algorhithms. Uspehi Mat. Nauk. 25, 85–127 (1970)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The author wishes to express his gratitude to the referees for helpful comments and suggesting references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Okamura.

Additional information

This work was supported by Grant-in-Aid for JSPS fellows (24.8491).

Appendix

Appendix

1.1 Computability of F(i, σ)

We will give a proof of that F(i, σ) defined in Section 2 is computable. Since −γ < −1 < α;, there exist \(\alpha ^{\prime } \in (-1, \alpha )\) and \(\beta ^{\prime } > \beta \) such that b i x + d i ≠0 for any \(x \in [\alpha ^{\prime }, \beta ^{\prime }]\), i = 0, 1. Then,

Lemma A.1

\(\alpha ^{\prime } < {\Phi }(^{t}\!A_{i}; \alpha ^{\prime }) \leq {\Phi }(^{t}\!A_{i}; \beta ^{\prime }) < \beta ^{\prime }, \, i = 0,1\).

Proof

By using the proof of Lemma 2.2 in [13], we have

$${\Phi}(^{t}\! A_{0}; z) - z = \frac{-(d_{0}-a_{0})z+c_{0}}{d_{0}}, \text{ and, } {\Phi}(^{t}\! A_{1}; z) - z = -\frac{(z+1)(z-c_{1}/b_{1})}{z+\gamma}. $$

Since d 0>a 0 > 0, Φ(t A 0;z)−z is strictly decreasing. By using \(\alpha ^{\prime } < \alpha \), \(\beta ^{\prime } > \beta \), and, α; ≤ Φ(t A 0;α;) ≤ Φ(t A 0;β) ≤ β, we have that \(\alpha ^{\prime } < {\Phi }(^{t}\!A_{0}; \alpha ^{\prime }) \leq {\Phi }(^{t}\! A_{0}; \beta ^{\prime }) < \beta ^{\prime }\). By using \(-\gamma < -1 < \alpha ^{\prime } < c_{1}/b_{1} < \beta ^{\prime }\), we have that \(\alpha ^{\prime } < {\Phi }(^{t}\! A_{1}; \alpha ^{\prime }) \leq {\Phi }(^{t}\! A_{1}; \beta ^{\prime }) < \beta ^{\prime }\). □

There exists \(L \in \mathbb {N}\) such that for any \(x, y \in [\alpha ^{\prime }, \beta ^{\prime }]\) and i∈{0, 1}, \(\left | {\Phi }(^{t}\!A_{i}; x) - {\Phi }(^{t}\!A_{i}; y) \right | \leq L|x-y|\). Since \(a_{0}, \dots , d_{1}\) are computable numbers, there exist computable functions \(F_{x} : \mathbb {N} \rightarrow \mathbb {Q}\) such that |F x (n)−x|≤(L + 1)n, \(x = a_{0}, \dots , d_{0}, a_{1}, \dots , d_{1}\).

Let \(\tilde {A}_{i, n} = \left (\begin {array}{cc}F_{a_{i}}(n) & F_{b_{i}}(n) \\F_{c_{i}}(n) & F_{d_{i}}(n) \end {array}\right )\), i = 0, 1, \(n \in \mathbb {N}\). Then,

Lemma A.2

There exists \(n \in \mathbb {N}\) such that for any n ≥ N and i = 0, 1,

  • i  \({\Phi }(^{t}\!\tilde {A}_{i, n}; z) \text { is well-defined on } [\alpha ^{\prime }, \beta ^{\prime }]\).

  • ii  \({\Phi }(^{t}\!\tilde A_{i, n}; z) \text { is increasing on } [\alpha ^{\prime }, \beta ^{\prime }]\).

  • iii  \(\alpha ^{\prime } < {\Phi }(^{t}\!\tilde {A}_{i,n}; \alpha ^{\prime }) \leq {\Phi }(^{t}\!\tilde {A}_{i,n}; \beta ^{\prime }) < \beta ^{\prime }\).

  • iv  \({\Phi }(^{t}\!\tilde A_{i,n}; z) \in [\alpha ^{\prime }, \beta ^{\prime }], \forall z \in [\alpha ^{\prime }, \beta ^{\prime }]\).

Proof

  • (i)  By noting \(\lim _{n \rightarrow \infty } F_{b_{i}}(n) = b_{i}\), \(\lim _{n \rightarrow \infty } F_{d_{i}}(n) = d_{i}\), and, \(\inf _{x \in [\alpha ^{\prime }, \beta ^{\prime }], i = 0,1} |b_{i}x + d_{i}| > 0\), we have that \(\inf _{x \in [\alpha ^{\prime }, \beta ^{\prime }], i = 0,1} |F_{b_{i}}(n)x + F_{d_{i}}(n)| > 0\) for any sufficiently large n.

  • (ii)  By using \(\det A_{i} > 0\) and \(\lim _{n \rightarrow \infty } F_{x}(n) = x\), \(x = a_{0}, \dots , d_{1}\), we have that \(\det \tilde A_{i, n} > 0\) for any sufficiently large n.

  • (iii)  This follows from \(\lim _{n \rightarrow \infty } {\Phi }(^{t}\!\tilde A_{i,n}; \alpha ^{\prime }) = {\Phi }(^{t}\! A_{i}; \alpha ^{\prime })\), \(\lim _{n \rightarrow \infty } {\Phi }(^{t}\!\tilde A_{i,n}; \beta ^{\prime }) = {\Phi }(^{t}\! A_{i}; \beta ^{\prime })\), i = 0, 1, and Lemma A.1.

  • (iv)  This follows from (ii) and (iii).

Let \(D := \{(i, \sigma ) \in \mathbb {N} \times \{0,1\}^{\ast } : i \leq |\sigma | \}\). We define a function \(\tilde {F} : D \times \mathbb {N} \rightarrow \mathbb {Q}\) by \(\tilde {F} (0, \sigma , n) := 0\), and, \(\tilde {F} (i, \sigma , n) := {\Phi } (^{t}\!\tilde {A}_{\sigma (i-1), n+N} ; \tilde {F} (i-1, \sigma , n)), \, 1 \leq i \leq |\sigma |\). Due to Lemma A.2, this is well-defined and \(\tilde {F}(i, \sigma , n) \in [\alpha ^{\prime }, \beta ^{\prime }]\). This is a computable function.

We let \(G(m) := \max _{x \in [\alpha ^{\prime }, \beta ^{\prime }], j = 0,1} |{\Phi }(^{t}\!A_{j}; x) - {\Phi }(^{t}\!\tilde {A}_{j, m+N}; x) |\), H(0, n):=0, and, \(H(i, m) := \max _{\sigma : |\sigma | \geq i} |F(i, \sigma ) - \tilde {F} (i, \sigma , m)|, \, i \geq 1, \, m \in \mathbb {N}\). Then,

$$\begin{array}{@{}rcl@{}} H(i, m) &&\leq \max_{\sigma : |\sigma| \geq i} |{\Phi}(^{t}\!A_{\sigma(i-1)}; F(i-1, \sigma)) - {\Phi}(^{t}\!A_{\sigma(i-1)}; \tilde {F} (i-1, \sigma, m))| \\ &&+ \max_{\sigma : |\sigma| \geq i} |{\Phi}(^{t}\!A_{\sigma(i-1)}; \tilde F (i-1, \sigma, m)) - {\Phi}(^{t}\!\tilde A_{\sigma(i-1), m+N}; \tilde F (i-1, \sigma, m))| \\ &&\leq L H(i-1, m) + G(m). \end{array} $$

Hence, H(i, m) ≤ (L + 1)i G(m). By noting that \(|F_{x}(n) - x| \leq (L+1)^{-m}, x = a_{0}, \dots , d_{1}\), we see that there exists a constant C > 0 and \(M \in \mathbb {N}\) such that G(m) ≤ C(L + 1)m for any mM. Therefore, there exists a computable function \(g : \mathbb {N} \rightarrow \mathbb {N}\) such that g(0) ≥ N, and, G(g(m)) ≤ m −1, m ≥ 1.

Let f(i, n) := g((L + 2)i2n) and define \(u : D \times \mathbb {N} \rightarrow \mathbb {Q}\) by u(0, σ, n):=0, \(u(i, \sigma , n) := \tilde {F}(i, \sigma , f(i, n))\), \(n \in \mathbb {N}, 1 \leq i \leq |\sigma |\). Then, u is a computable function and |F(i, σ)−u(i, σ, n)|≤H(i, f(i, n)) ≤ (L + 1)i G(f(i, n)) ≤ 2n.

Thus we see that \(f : D \rightarrow \mathbb {R}\) is a computable function.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okamura, K. Random Sequences with Respect to a Measure Defined by Two Linear Fractional Transformations. Theory Comput Syst 57, 226–237 (2015). https://doi.org/10.1007/s00224-014-9585-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-014-9585-1

Keywords

Navigation