Abstract
We consider a finite element method for the elliptic obstacle problem over polyhedral domains in ℝd, which enforces the unilateral constraint solely at the nodes. We derive novel optimal upper and lower a posteriori error bounds in the maximum norm irrespective of mesh fineness and the regularity of the obstacle, which is just assumed to be Hölder continuous. They exhibit optimal order and localization to the non-contact set. We illustrate these results with simulations in 2d and 3d showing the impact of localization in mesh grading within the contact set along with quasi-optimal meshes.
Similar content being viewed by others
References
R. A. Adams: Sobolev spaces, vol. 65 of Pure and Applied Mathematics, Academic Press, Inc., a subsidiary of Harcourt Brace Jovanovich, Publishers, New York - San Francisco - London 1975
C. Baiocchi: Estimation d'erreur dans L ∞ pour les inèquations à obstacle, in Mathematical Aspects of Finite Element Methods, Proc. Conf. Rome 1975, I. Galligani and E. Magenes, eds., vol. 606 of Lect. Notes Math 27–34 (1977)
Z. Chen, R. H. Nochetto: Residual type a~posteriori error estimates for elliptic obstacle problems, Numer. Math 84, 527–548 (2000)
E. Dari, R. G. Durán, C. Padra: Maximum norm error estimators for three-dimensional elliptic problems, SIAM J. Numer. Anal 37, 683–700 (2000)
C. M. Elliott: On the Finite Element Approximation of an Elliptic Variational Inequality Arising from an Implicit Time Discretization of the Stefan Problem, IMA J. Numer. Anal 1, 115–125 (1981)
L. C. Evans, R. Gariepy: Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Inc., 2000 Corporate Blvd., N.W., Boca Ratin, Florida, 33431, 1992
J. Frehse, U. Mosco: Irregular obstacles and quasivariational inequalities of stochastic impulse control, Ann. Scuola Norm. Sup. Cl. Pisa 9, 105–157 (1982)
A. Friedman: Variational Principles and Free-Boundary Problems, Pure Appl. Math., John Wiley, New York 1982
D. Kinderlehrer, G. Stampacchia: An Introduction to Variational Inequalities and their Applications, vol. 88 of Pure Appl. Math., Academic Press, New York 1980
J. Nitsche: L ∞ convergence of finite element approximations, in Mathematical Aspects of Finite Element Methods, Proc. Conf. Rome 1975, I. Galligani and E. Magenes, eds., vol. 606 of Lectures Notes Math, 261–274 (1977)
R. H. Nochetto: Pointwise a posteriori error estimates for elliptic problems on highly graded meshes, Math. Comp 64, 1–22 (1995)
R. H. Nochetto, L. B. Wahlbin: Positivity preserving finite element approximation. To appear in Math. Comp.
J.-F. Rodrigues: Obstacle Problems in Mathematical Physics, vol. 134 of North-Holland Math. Stud., North-Holland, Amsterdam 1987
A. Schatz, L. Wahlbin: On the quasi-optimality in L ∞ of the H 1 0 projection into finite element spaces, Math. Comp 36, 1–22 (1982)
A. Schmidt, K. G. Siebert: ALBERT –- Software for Scientific Computations and Applications, Acta Math. Univ. Comenianae 70, 105–122 (2001)
A. Schmidt, K. G. Siebert: ALBERT: An adaptive hierarchical finite element toolbox, Documentation, Preprint 06/2000 Universität Freiburg, 244~p.
A. Veeser: On A~Posteriori Error Estimation for Constant Obstacle Problems. In: Numerical Methods for Viscosity Solution and Applications, M. Falcone e C. Makridakis (ed.), World Scientific Publishing Company, Singapore 2001
A. Veeser: Efficient and reliable a~posteriori error estimators for elliptic obstacle problems, SIAM J. Numer. Anal 39, 146–167 (2001)
R. Verfürth: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Advances in Numerical Mathematics, John Wiley, Chichester 1996
Author information
Authors and Affiliations
Corresponding author
Additional information
Partially supported by NSF Grant DMS-9971450 and NSF/DAAD Grant INT-9910086.
Partially suported by DAAD/NSF grant ``Projektbezogene Förderung des Wissenschaftleraustauschs in den Natur-, Ingenieur- und den Sozialwissenschaften mit der NSF''.
Partially supported by DAAD/NSF grant ``Projektbezogene Förderung des Wissenschaftleraustauschs in den Natur-, Ingenieur- und den Sozialwissenschaften mit der NSF'', and by the TMR network ``Viscosity solutions and their Applications'', Italian M.I.U.R. projects ``Scientific Computing: Innovative Models and Numerical Methods'' and ``Symmetries, Geometric Structures, Evolution and Memory in PDEs''.
Mathematics Subject Classification (1991): 65N15, 65N30, 35J85
Rights and permissions
About this article
Cite this article
Nochetto, R., Siebert, K. & Veeser, A. Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95, 163–195 (2003). https://doi.org/10.1007/s00211-002-0411-3
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-002-0411-3