[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Pointwise a posteriori error control for elliptic obstacle problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider a finite element method for the elliptic obstacle problem over polyhedral domains in ℝd, which enforces the unilateral constraint solely at the nodes. We derive novel optimal upper and lower a posteriori error bounds in the maximum norm irrespective of mesh fineness and the regularity of the obstacle, which is just assumed to be Hölder continuous. They exhibit optimal order and localization to the non-contact set. We illustrate these results with simulations in 2d and 3d showing the impact of localization in mesh grading within the contact set along with quasi-optimal meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Adams: Sobolev spaces, vol. 65 of Pure and Applied Mathematics, Academic Press, Inc., a subsidiary of Harcourt Brace Jovanovich, Publishers, New York - San Francisco - London 1975

  2. C. Baiocchi: Estimation d'erreur dans L pour les inèquations à obstacle, in Mathematical Aspects of Finite Element Methods, Proc. Conf. Rome 1975, I. Galligani and E. Magenes, eds., vol. 606 of Lect. Notes Math 27–34 (1977)

  3. Z. Chen, R. H. Nochetto: Residual type a~posteriori error estimates for elliptic obstacle problems, Numer. Math 84, 527–548 (2000)

    MathSciNet  MATH  Google Scholar 

  4. E. Dari, R. G. Durán, C. Padra: Maximum norm error estimators for three-dimensional elliptic problems, SIAM J. Numer. Anal 37, 683–700 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. C. M. Elliott: On the Finite Element Approximation of an Elliptic Variational Inequality Arising from an Implicit Time Discretization of the Stefan Problem, IMA J. Numer. Anal 1, 115–125 (1981)

    Google Scholar 

  6. L. C. Evans, R. Gariepy: Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Inc., 2000 Corporate Blvd., N.W., Boca Ratin, Florida, 33431, 1992

  7. J. Frehse, U. Mosco: Irregular obstacles and quasivariational inequalities of stochastic impulse control, Ann. Scuola Norm. Sup. Cl. Pisa 9, 105–157 (1982)

    Google Scholar 

  8. A. Friedman: Variational Principles and Free-Boundary Problems, Pure Appl. Math., John Wiley, New York 1982

  9. D. Kinderlehrer, G. Stampacchia: An Introduction to Variational Inequalities and their Applications, vol. 88 of Pure Appl. Math., Academic Press, New York 1980

  10. J. Nitsche: L convergence of finite element approximations, in Mathematical Aspects of Finite Element Methods, Proc. Conf. Rome 1975, I. Galligani and E. Magenes, eds., vol. 606 of Lectures Notes Math, 261–274 (1977)

  11. R. H. Nochetto: Pointwise a posteriori error estimates for elliptic problems on highly graded meshes, Math. Comp 64, 1–22 (1995)

    Google Scholar 

  12. R. H. Nochetto, L. B. Wahlbin: Positivity preserving finite element approximation. To appear in Math. Comp.

  13. J.-F. Rodrigues: Obstacle Problems in Mathematical Physics, vol. 134 of North-Holland Math. Stud., North-Holland, Amsterdam 1987

  14. A. Schatz, L. Wahlbin: On the quasi-optimality in L of the H 1 0 projection into finite element spaces, Math. Comp 36, 1–22 (1982)

    MathSciNet  Google Scholar 

  15. A. Schmidt, K. G. Siebert: ALBERT –- Software for Scientific Computations and Applications, Acta Math. Univ. Comenianae 70, 105–122 (2001)

    MATH  Google Scholar 

  16. A. Schmidt, K. G. Siebert: ALBERT: An adaptive hierarchical finite element toolbox, Documentation, Preprint 06/2000 Universität Freiburg, 244~p.

  17. A. Veeser: On A~Posteriori Error Estimation for Constant Obstacle Problems. In: Numerical Methods for Viscosity Solution and Applications, M. Falcone e C. Makridakis (ed.), World Scientific Publishing Company, Singapore 2001

  18. A. Veeser: Efficient and reliable a~posteriori error estimators for elliptic obstacle problems, SIAM J. Numer. Anal 39, 146–167 (2001)

    Article  Google Scholar 

  19. R. Verfürth: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Advances in Numerical Mathematics, John Wiley, Chichester 1996

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo H. Nochetto.

Additional information

Partially supported by NSF Grant DMS-9971450 and NSF/DAAD Grant INT-9910086.

Partially suported by DAAD/NSF grant ``Projektbezogene Förderung des Wissenschaftleraustauschs in den Natur-, Ingenieur- und den Sozialwissenschaften mit der NSF''.

Partially supported by DAAD/NSF grant ``Projektbezogene Förderung des Wissenschaftleraustauschs in den Natur-, Ingenieur- und den Sozialwissenschaften mit der NSF'', and by the TMR network ``Viscosity solutions and their Applications'', Italian M.I.U.R. projects ``Scientific Computing: Innovative Models and Numerical Methods'' and ``Symmetries, Geometric Structures, Evolution and Memory in PDEs''.

Mathematics Subject Classification (1991): 65N15, 65N30, 35J85

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nochetto, R., Siebert, K. & Veeser, A. Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95, 163–195 (2003). https://doi.org/10.1007/s00211-002-0411-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-002-0411-3

Keywords

Navigation