[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Q 1-degrees of c.e. sets

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We show that the Q-degree of a hyperhypersimple set includes an infinite collection of Q 1-degrees linearly ordered under \({\leq_{Q_1}}\) with order type of the integers and consisting entirely of hyperhypersimple sets. Also, we prove that the c.e. Q 1-degrees are not an upper semilattice. The main result of this paper is that the Q 1-degree of a hemimaximal set contains only one c.e. 1-degree. Analogous results are valid for \({\Pi_1^0}\) s 1-degrees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Downey R.G., Stob M.: Automorphisms of the lattice of recursively enumerable sets: orbits. Adv. Math. 92(2), 237–265 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Gill J.T. III, Morris P.H.: On subcreative sets and s-reducibility. J. Symbol. Logic 39, 669–677 (1974)

    Article  MathSciNet  Google Scholar 

  3. Kobzev, G.N.: The btt-reducibility. Candidate’s Dissertation, Novosibirsk (1975)

  4. Marchenkov, S.S.: One class of partial sets. Mat. Zametki 20, 473–478 (1976) (Russian); Math. Notes 20, 823–825 (1976) (English translation)

    Google Scholar 

  5. Miller D., Remmel J.B.: Effectively nowhere simple sets. J. Symbol. Logic 49(1), 129–136 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Morozov A.S.: On a class of recursively enumerable sets. Sibirsk. Mat. Zh. 28(2), 124–128 (1987) (Russian)

    MathSciNet  Google Scholar 

  7. Omanadze, R. Sh.: The upper semilattice of recursively enumerable Q-degrees. Algebra i Logika 23(2), 175–184 (1984) (Russian); Algebra and Logic 23, 124–130 (1984) (English translation)

    Google Scholar 

  8. Omanadze R.Sh.: Q-reducibility and nowhere simple sets. Soobshch. Akad. Nauk Gruzin. SSR 127(1), 29–32 (1987) (Russian)

    MathSciNet  MATH  Google Scholar 

  9. Omanadze, R. Sh.: On the upper semilattice of recursively enumerable sQ-degrees. Algebra i Logika 30(4), 405–413 (1991) (Russian); Algebra and Logic 30(4), 265–271 (1991) (English translation)

  10. Omanadze R. Sh., Sorbi A.: Strong enumeration reducibilities. Arch. Math. Logic 45(7), 869–912 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Omanadze R. Sh., Sorbi A.: Immunity properties of the s-degrees. Georgian Math. J. 17(3), 563–579 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Rogers H. Jr: Theory of recursive functions and effective computability. 2nd edn. MIT Press, Cambridge (1987)

    Google Scholar 

  13. Shore R.A.: Nowhere simple sets and the lattice of recursively enumerable sets. J. Symbol. Logic 43(2), 322–330 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  14. Soare R.I.: Recursively enumerable sets and degrees. A study of computable functions and computably generated sets. Perspectives in Mathematical Logic. Springer, Berlin (1987)

    Google Scholar 

  15. Yates C.E.M.: On the degrees of index sets. II. Trans. Am. Math. Soc. 135(1), 249–266 (1969)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. O. Chitaia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omanadze, R.S., Chitaia, I.O. Q 1-degrees of c.e. sets. Arch. Math. Logic 51, 503–515 (2012). https://doi.org/10.1007/s00153-012-0278-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-012-0278-7

Keywords

Mathematics Subject Classification

Navigation