[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On meta complexity of propositional formulas and propositional proofs

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

A new approach to defining complexity of propositional formulas and proofs is suggested. Instead of measuring the size of these syntactical structures in the propositional language, the article suggests to define the complexity by the size of external descriptions of such constructions. The main result is a lower bound on proof complexity with respect to this new definition of complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cook S.A., Reckhow R.A.: The relative efficiency of propositional proof systems. J. Symbolic Logic 44(1), 36–50 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cook W., Coullard C.R., Turán Gy.: On the complexity of cutting-plane proofs. Discrete Appl. Math. 18(1), 25–38 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39(2–3), 297–308 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Krajíček J.: Diagonalization in proof complexity. Fund. Math. 182(2), 181–192 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Krajíček J.: Implicit proofs. J. Symbolic Logic 69(2), 387–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Krajíček J.: Structured pigeonhole principle, search problems and hard tautologies. J. Symbolic Logic 70(2), 619–630 (2005)

    Article  MathSciNet  Google Scholar 

  7. Krajíček J., Pudlák P., Woods A.: An exponential lower bound to the size of bounded depth Frege proofs of the pigeonhole principle. Random Struct. Algorithms 7(1), 15–39 (1995)

    Article  MATH  Google Scholar 

  8. Parikh R.J.: Some results on the lengths of proofs. Trans. Am. Math. Soc. 177, 29–36 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pitassi T., Beame P., Impagliazzo R.: Exponential lower bounds for the pigeonhole principle. Comput. Complexity 3(2), 97–140 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Naumov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naumov, P. On meta complexity of propositional formulas and propositional proofs. Arch. Math. Logic 47, 35–52 (2008). https://doi.org/10.1007/s00153-008-0068-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-008-0068-4

Mathematics Subject Classification (2000)

Navigation