[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Wood inspection with non-supervised clustering

  • Original paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract. The appearance of sawn timber has huge natural variations that the human inspector easily compensates for mentally when determining the types of defects and the grade of each board. However, for automatic wood inspection systems these variations are a major source for complication. This makes it difficult to use textbook methodologies for visual inspection. These methodologies generally aim at systems that are trained in a supervised manner with samples of defects and good material, but selecting and labeling the samples is an error-prone process that limits the accuracy that can be achieved. We present a non-supervised clustering-based approach for detecting and recognizing defects in lumber boards. A key idea is to employ a self-organizing map (SOM) for discriminating between sound wood and defects. Human involvement needed for training is minimal. The approach has been tested with color images of lumber boards, and the achieved false detection and error escape rates are low. The approach also provides a self-intuitive visual user interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Author information

Authors and Affiliations

Authors

Additional information

Received: 16 December 2000 / Accepted: 8 December 2001

Correspondence to: O. Silvén

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silvén, O., Niskanen, M. & Kauppinen, H. Wood inspection with non-supervised clustering. Machine Vision and Applications 13, 275–285 (2003). https://doi.org/10.1007/s00138-002-0084-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-002-0084-z

Navigation