[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Digital Modeling and PID Controller Design for MIMO Analog Systems with Multiple Delays in States, Inputs and Outputs

  • Published:
Circuits, Systems & Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a discrete-time state-space methodology for the digital modeling and design of an optimal digital proportional-integral-derivative (PID) plus state-feedback controller for multiple-input, multiple-output (MIMO) continuous-time systems with multiple time delays in states, inputs and outputs. To implement the digital design, first the Chebyshev quadrature formula together with a linear interpolation method is employed to obtain an extended discrete-time state-space model from the continuous-time multiple time-delay system. Then, a partially predetermined digital PID controller and the extended discrete-time state-space model are formulated as an augmented discrete-time state-space system utilizing state-feedforward and state-feedback linear-quadratic regulator (LQR) design. As a result, the parameters of the optimal PID controller and its associated state-feedback controller can be determined by tuning the weighting matrices in the LQR performance criteria. Further, an optimal discrete-time observer is jointly constructed for the multivariable system with multiple delays in states, inputs and outputs. The proposed design methodology can be applied to general MIMO continuous-time multiple time-delay systems for performance improvement and disturbance rejection. An illustrative example is given to demonstrate the effectiveness of the developed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.J. Astrom, B. Wittenmark, Computer Controlled Systems (Prentice-Hall, Englewood Cliffs, 1997)

    Google Scholar 

  2. M. Boutayeb, Observer design for linear time-delay systems. Syst. Control Lett. 44, 103–109 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. T. Chen, B. Francis, Optimal Sampled-Data Control System (Springer, London, 1995)

    Google Scholar 

  4. M. Fliess, R. Marguez, H. Mounier, An extension of predictive control, PID regulators and Smith predictor to some linear delay systems. Int. J. Control 75, 728–743 (2002)

    Article  MATH  Google Scholar 

  5. G.C. Goodwin, S.F. Graebe, M.E. Salgado, Control System Design (Prentice-Hall, Englewood Cliffs, 2001)

    Google Scholar 

  6. A.N. Gundes, H. Ozbay, A.B. Ozguler, PID controller synthesis for a class of unstable MIMO plants with I/O delays. Automatica 43, 135–142 (2007)

    Article  MathSciNet  Google Scholar 

  7. C.M. Huang, J.S.H. Tsai, R.S. Provence, L.S. Shieh, The observer-based linear quadratic sub-optimal digital tracker for analog systems with input and state delays. Optim. Control Appl. Methods 24, 197–236 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. J.H. Kim, H.B. Park, H state feedback control for generalized continuous/discrete time-delay system. Automatica 35, 1443–1451 (1999)

    Article  MATH  Google Scholar 

  9. F.L. Lewis, V.L. Syrmos, Optimal Control (Wiley-Interscience, New York, 1995)

    Google Scholar 

  10. J. Leyva-Ramos, A.E. Pearson, An asymptotic model observer for linear autonomous time lag systems. IEEE Trans. Automat. Control AC-40, 1291–1294 (1995)

    Article  MathSciNet  Google Scholar 

  11. T. Liu, W.D. Zhang, D. Gu, Analytical design of two-degree-of-freedom control scheme for open-loop unstable processes with time delays. J. Process Control 15, 559–572 (2005)

    Article  Google Scholar 

  12. J.M. Madsen, L.S. Shieh, S.M. Guo, State-space digital PID controller design for multivariable analog systems with multiple time delays. Asian J. Control 8, 161–173 (2006)

    MathSciNet  Google Scholar 

  13. M.S. Mahmoud, Robust Control and Filtering for Time-Delay Systems (Dekker, New York, 2000)

    MATH  Google Scholar 

  14. M. Malek-Zavarei, M. Jamshidi, Time-Delay Systems: Analysis, Optimization and Applications (North-Holland, Amsterdam, 1987)

    MATH  Google Scholar 

  15. G. Meinsma, L. Mirkin, H control of systems with multiple I/O delays via decomposition to Adobe problem. IEEE Trans. Automat. Control 52, 199–211 (2005)

    Article  MathSciNet  Google Scholar 

  16. A.A. Moelja, G. Meinsma, J. Kuipers, On H 2 control of systems with multiple I/O delays. IEEE Trans. Automat. Control 51, 1347–1354 (2006)

    Article  MathSciNet  Google Scholar 

  17. B.A. Ogunnaike, W.H. Ray, Multivariable controller design for linear systems having multiple time delays. AICHE J. 25, 1043–1057 (1979)

    Article  Google Scholar 

  18. B.A. Ogunnaike, W.H. Ray, Incomplete state feedback for time delay systems: observer applications in multidelay compensation. AICHE J. 30, 717–724 (1984)

    Article  MathSciNet  Google Scholar 

  19. A.M. Pertew, H.J. Marquez, Q. Zhao, H optimal sampled-data state observer design. IEE Proc. Control Theory Appl. 153, 453–461 (2006)

    Article  MathSciNet  Google Scholar 

  20. K.Y. Polyakov, H 2-optimal sampled-data control for plants with multiple input and output delays. Asian J. Control 8, 107–116 (2006)

    MathSciNet  Google Scholar 

  21. A. Ralston, A First Course in Numerical Analysis (McGraw-Hill, New York, 1965)

    MATH  Google Scholar 

  22. L.S. Shieh, W.M. Wang, J.S.H. Tsai, Digital redesign of H controller via bilinear approximation method for state-delayed systems. Int. J. Control 70, 665–683 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Q.G. Wang, T.H. Lee, C. Lin, Relay Feedback: Analysis, Identification, and Control (Springer, London, 2003)

    Google Scholar 

  24. Q.G. Wang, B. Zou, Y. Zhang, Decoupling Smith predictor design for multivariable systems with multiple time delays. Trans. Inst. Chem. Eng. 78, 565–572 (2000)

    Article  Google Scholar 

  25. K. Watanabe, M. Ito, An observer for linear feedback control laws of multivariable systems with multiple delays in controls and outputs. Syst. Control Lett. 1, 54–59 (1981)

    Article  MATH  Google Scholar 

  26. H. Zhang, G. Duan, L. Xie, Linear quadratic regulation for linear time-varying systems with multiple input delays. Automatica 42, 1465–1476 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Y. Zhang, L.S. Shieh, A.C. Dunn, PID controller design for disturbed multivariable systems. IEE Proc. Control Theory Appl. 151, 567–576 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Shieh.

Additional information

This work was supported in part by U.S. Army Research Office under Grant W911NF-06-1-0507, the National Science Foundation under Grant NSF0717860, and Research Contract 1440234.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Y.P., Shieh, L.S., Liu, C.R. et al. Digital Modeling and PID Controller Design for MIMO Analog Systems with Multiple Delays in States, Inputs and Outputs. Circuits Syst Signal Process 28, 111–145 (2009). https://doi.org/10.1007/s00034-008-9073-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-008-9073-4

Keywords

Navigation