[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Rules extraction in short memory time series using genetic algorithms

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract:

Data mining is performed using genetic algorithm on artificially generated time series data with short memory. The extraction of rules from a training set and the subsequent testing of these rules provide a basis for the predictions on the test set. The artificial time series are generated using the inverse whitening transformation, and the correlation function has an exponential form with given time constant indicative of short memory. A vector quantization technique is employed to classify the daily rate of return of this artificial time series into four categories. A simple genetic algorithm based on a fixed format of rules is introduced to do the forecasting. Comparing to the benchmark tests with random walk and random guess, genetic algorithms yield substantially better prediction rates, between 50% to 60%. This is an improvement compared with the 47% for random walk prediction and 25% for random guessing method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received 29 August 2000

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fong, L., Szeto, K. Rules extraction in short memory time series using genetic algorithms. Eur. Phys. J. B 20, 569–572 (2001). https://doi.org/10.1007/PL00011110

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00011110

Navigation