Summary.
We construct a new third-order semi-discrete genuinely multidimensional central scheme for systems of conservation laws and related convection-diffusion equations. This construction is based on a multidimensional extension of the idea, introduced in [17] – the use of more precise information about the local speeds of propagation, and integration over nonuniform control volumes, which contain Riemann fans.
As in the one-dimensional case, the small numerical dissipation, which is independent of \({\cal O}(\frac{1}{\Delta t})\), allows us to pass to a limit as \(\Delta t \downarrow 0\). This results in a particularly simple genuinely multidimensional semi-discrete scheme. The high resolution of the proposed scheme is ensured by the new two-dimensional piecewise quadratic non-oscillatory reconstruction. First, we introduce a less dissipative modification of the reconstruction, proposed in [29]. Then, we generalize it for the computation of the two-dimensional numerical fluxes.
Our scheme enjoys the main advantage of the Godunov-type central schemes –simplicity, namely it does not employ Riemann solvers and characteristic decomposition. This makes it a universal method, which can be easily implemented to a wide variety of problems. In this paper, the developed scheme is applied to the Euler equations of gas dynamics, a convection-diffusion equation with strongly degenerate diffusion, the incompressible Euler and Navier-Stokes equations. These numerical experiments demonstrate the desired accuracy and high resolution of our scheme.
Similar content being viewed by others
Author information
Authors and Affiliations
Additional information
Received February 7, 2000 / Published online December 19, 2000
Rights and permissions
About this article
Cite this article
Kurganov, A., Petrova, G. A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems. Numer. Math. 88, 683–729 (2001). https://doi.org/10.1007/PL00005455
Issue Date:
DOI: https://doi.org/10.1007/PL00005455