Abstract
Artificial intelligence offers the potential to automate challenging data-processing tasks in collider physics. To establish its prospects, we explore to what extent deep learning with convolutional neural networks can discriminate quark and gluon jets better than observables designed by physicists. Our approach builds upon the paradigm that a jet can be treated as an image, with intensity given by the local calorimeter deposits. We supplement this construction by adding color to the images, with red, green and blue intensities given by the transverse momentum in charged particles, transverse momentum in neutral particles, and pixel-level charged particle counts. Overall, the deep networks match or outperform traditional jet variables. We also find that, while various simulations produce different quark and gluon jets, the neural networks are surprisingly insensitive to these differences, similar to traditional observables. This suggests that the networks can extract robust physical information from imperfect simulations.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
ATLAS collaboration, A neural network clustering algorithm for the ATLAS silicon pixel detector, 2014 JINST 9 P09009 [arXiv:1406.7690] [INSPIRE].
ATLAS collaboration, Performance of b-jet identification in the ATLAS experiment, 2016 JINST 11 P04008 [arXiv:1512.01094] [INSPIRE].
M. Tosi, Performance of tracking, b-tagging and jet/MET reconstruction at the CMS high level trigger, J. Phys. Conf. Ser. 664 (2015) 082055.
CMS collaboration, Performance of tau-lepton reconstruction and identification in CMS, 2012 JINST 7 P01001 [arXiv:1109.6034] [INSPIRE].
NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
J. Gallicchio, J. Huth, M. Kagan, M.D. Schwartz, K. Black and B. Tweedie, Multivariate discrimination and the Higgs + W/Z search, JHEP 04 (2011) 069 [arXiv:1010.3698] [INSPIRE].
T. Maggipinto et al., Role of neural networks in the search of the Higgs boson at LHC, Phys. Lett. B 409 (1997) 517 [hep-ex/9705020] [INSPIRE].
CMS collaboration, Search for supersymmetry in events with opposite-sign dileptons and missing transverse energy using an artificial neural network, Phys. Rev. D 87 (2013) 072001 [arXiv:1301.0916] [INSPIRE].
P. Baldi, P. Sadowski and D. Whiteson, Enhanced Higgs boson to τ + τ − search with deep learning, Phys. Rev. Lett. 114 (2015) 111801 [arXiv:1410.3469] [INSPIRE].
J. Cogan, M. Kagan, E. Strauss and A. Schwarztman, Jet-images: computer vision inspired techniques for jet tagging, JHEP 02 (2015) 118 [arXiv:1407.5675] [INSPIRE].
L.G. Almeida, M. Backović, M. Cliche, S.J. Lee and M. Perelstein, Playing tag with ANN: boosted top identification with pattern recognition, JHEP 07 (2015) 086 [arXiv:1501.05968] [INSPIRE].
L. de Oliveira, M. Kagan, L. Mackey, B. Nachman and A. Schwartzman, Jet-images — Deep learning edition, JHEP 07 (2016) 069 [arXiv:1511.05190] [INSPIRE].
P. Baldi, K. Bauer, C. Eng, P. Sadowski and D. Whiteson, Jet substructure classification in high-energy physics with deep neural networks, Phys. Rev. D 93 (2016) 094034 [arXiv:1603.09349] [INSPIRE].
D. Guest, J. Collado, P. Baldi, S.-C. Hsu, G. Urban and D. Whiteson, Jet flavor classification in high-energy physics with deep neural networks, Phys. Rev. D 94 (2016) 112002 [arXiv:1607.08633] [INSPIRE].
J. Barnard, E.N. Dawe, M.J. Dolan and N. Rajcic, Parton shower uncertainties in jet substructure analyses with deep neural networks, arXiv:1609.00607 [INSPIRE].
A. Krizhevsky, I. Sutskever and G.E. Hinton, Imagenet classification with deep convolutional neural networks, in the proceedings of Neural Information Processing Systems (NIPS 2012), December 3-8, Lake Tahoe, U.S.A. (2012).
J. Pumplin, How to tell quark jets from gluon jets, Phys. Rev. D 44 (1991) 2025 [INSPIRE].
L. Lönnblad, C. Peterson and T. Rögnvaldsson, Finding gluon jets with a neural trigger, Phys. Rev. Lett. 65 (1990) 1321.
OPAL collaboration, A Study of differences between quark and gluon jets using vertex tagging of quark jets, Z. Phys. C 58 (1993) 387.
OPAL collaboration, A direct observation of quark-gluon jet differences at LEP, Phys. Lett. B 265 (1991) 462.
D. Ferreira de Lima, P. Petrov, D. Soper and M. Spannowsky, Quark-gluon tagging with shower deconstruction: unearthing dark matter and Higgs couplings, arXiv:1607.06031 [INSPIRE].
A.J. Larkoski, J. Thaler and W.J. Waalewijn, Gaining (mutual) information about quark/gluon discrimination, JHEP 11 (2014) 129 [arXiv:1408.3122] [INSPIRE].
B. Bhattacherjee, S. Mukhopadhyay, M.M. Nojiri, Y. Sakaki and B.R. Webber, Associated jet and subjet rates in light-quark and gluon jet discrimination, JHEP 04 (2015) 131 [arXiv:1501.04794] [INSPIRE].
J. Gallicchio and M.D. Schwartz, Quark and gluon jet substructure, JHEP 04 (2013) 090 [arXiv:1211.7038] [INSPIRE].
J. Gallicchio and M.D. Schwartz, Quark and gluon tagging at the LHC, Phys. Rev. Lett. 107 (2011) 172001 [arXiv:1106.3076] [INSPIRE].
J.R. Andersen et al., Les Houches 2015: physics at TeV colliders standard model working group report, arXiv:1605.04692 [INSPIRE].
ATLAS collaboration, Light-quark and gluon jet discrimination in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Eur. Phys. J. C 74 (2014) 3023 [arXiv:1405.6583] [INSPIRE].
C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Factorization for groomed jet substructure beyond the next-to-leading logarithm, JHEP 07 (2016) 064 [arXiv:1603.09338] [INSPIRE].
R. Collobert and J. Weston, A unified architecture for natural language processing: deep neural networks with multitask learning, in the proceedings of the 25th International Conference on Machine Learning, July 5-9, Helsinki, Finland (2008).
P. Baldi, P. Sadowski and D. Whiteson, Searching for exotic particles in high-energy physics with deep learning, Nature Commun. 5 (2014) 4308 [arXiv:1402.4735] [INSPIRE].
S. Dieleman, K.W. Willet and J. Dambre, Rotation-invariant convolutional neural networks for galaxy morphology prediction, Mon. Roy. Astron. Soc. 450 (2015) 1441 [arXiv:1503.07077].
M.A. Nielsen, Neural networks and deep learning, Determination Press, U.S.A. (2015).
I. Goodfellow, Y. Bengio and A. Courville, Deep learning, MIT Press, U.S.A. (2016).
X. Glorot, A. Bordes and Y. Bengio, Deep sparse rectifier neural networks, in the proceedings of the 14th International Conference on Artificial Intelligence and Statistics, April 11-13, Ft. Lauderdale, U.S.A. (2011).
K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward networks are universal approximators, Neural Netw. 2 (1989) 359.
J. Schmidhuber, Deep learning in neural networks: an overview, Neural Netw. 61 (2015) 85 [arXiv:1404.7828].
C. Szegedy et al., Going deeper with convolutions, in the proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 7-12, Boston U.S.A. (2015), arXiv:1409.4842.
N. Srivastava et al., Dropout: a simple way to prevent neural networks from overfitting, JMLR 15 (2014) 1929.
T. Sjöstrand, et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].
J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top tagging: a method for identifying boosted hadronically decaying top quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [INSPIRE].
NNPDF collaboration, R.D. Ball et al., A determination of parton distributions with faithful uncertainty estimation, Nucl. Phys. B 809 (2009) 1 [Erratum ibid. B 816 (2009) 293] [arXiv:0808.1231] [INSPIRE].
P.Y. Simard, D. Steinkraus and J.C. Platt, Best practices for convolutional neural networks applied to visual document analysis, ICDAR 3 (2003).
F. Chollet, Keras, available at GitHub (2015).
J. Bergstra et al., Theano: a CPU and GPU math compiler in Python, in the proceedings of the 9th Python in science conference, June 28-July 3, Austin, U.S.A. (2010).
K. He, X. Zhang, S. Ren and J. Sun, Delving deep into rectifiers: surpassing human-level performance on imagenet classification, in the proceedings of the IEEE International Conference on Computer Vision, December 11-18, Santiago, Chile (2015).
D. Kingma and J. Ba, Adam: a method for stochastic optimization, arXiv:1412.6980.
J. Snoek, H. Larochelle and R.P. Adams, Practical bayesian optimization of machine learning algorithms, in the proceedings of Neural Information Processing Systems (NIPS 2012), December 3-8, Lake Tahoe, U.S.A. (2012), arXiv:1206.2944.
CMS Collaboration, Particle-flow event reconstruction in CMS and Performance for Jets, Taus and MET, CMS-PAS-PFT-09-001 (2009).
F. Pedregosa et al., Scikit-learn: machine learning in Python, JMLR 12 (2012) 2825.
A.J. Larkoski, G.P. Salam and J. Thaler, Energy correlation functions for jet substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].
H. Küçük, Measurement of the inclusive-jet cross-section in proton-proton collisions and study of quark-gluon jet discrimination with the ATLAS experiment at the LHC, Dissertation, University College London, London. U.K. (2016).
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1612.01551
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Komiske, P.T., Metodiev, E.M. & Schwartz, M.D. Deep learning in color: towards automated quark/gluon jet discrimination. J. High Energ. Phys. 2017, 110 (2017). https://doi.org/10.1007/JHEP01(2017)110
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2017)110