Abstract
We present a novel method for precisely determining the QCD running coupling from Ruds measurements in electron-positron annihilation. When calculating the fixed-order perturbative QCD (pQCD) approximant of Ruds, its effective coupling constant \( {\alpha}_s\left({Q}_{\ast}^2\right) \) is determined by using the principle of maximum conformality, a systematic scale-setting method for gauge theories, whose resultant pQCD series satisfies all the requirements of renormalization group. Contribution due to the uncalculated higher-order (UHO) terms is estimated by using the Bayesian analysis. Using Ruds data measured by the KEDR detector at 22 centre-of-mass energies between 1.84 GeV and 3.72 GeV, we obtain \( {\alpha}_s\left({M}_Z^2\right) \) = \( {0.1227}_{-0.0132}^{+0.0117}\left(\exp .\right)\pm 0.0016\left(\textrm{the}.\right) \), where the theoretical uncertainty (the.) is negligible compared to the experimental one (exp.). Numerical analyses confirm that the new method for calculating Ruds removes conventional renormalization scale ambiguity, and the residual scale dependence due to the UHO-terms will also be highly suppressed due to a more convergent pQCD series. This leads to a significant stabilization of the perturbative series, and a significant reduction of theoretical uncertainty. It thus provides a reliable theoretical basis for precise determination of the QCD running coupling from Ruds measurements at future Tau-Charm Facility. It can also be applied for the precise determination of the hadronic contributions to muon g − 2 and QED coupling \( \alpha \left({M}_Z^2\right) \) within the tau-charm energy range.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
D.J. Gross and F. Wilczek, Ultraviolet behavior of non-Abelian gauge theories, Phys. Rev. Lett. 30 (1973) 1343 [INSPIRE].
H.D. Politzer, Reliable perturbative results for strong interactions?, Phys. Rev. Lett. 30 (1973) 1346 [INSPIRE].
Particle Data Group collaboration, Review of particle physics, PTEP 2022 (2022) 083C01 [INSPIRE].
A. Deur, S.J. Brodsky and G.F. de Teramond, The QCD running coupling, Nucl. Phys. 90 (2016) 1 [arXiv:1604.08082] [INSPIRE].
D. d’Enterria et al., The strong coupling constant: state of the art and the decade ahead, arXiv:2203.08271 [INSPIRE].
A. Deur, S.J. Brodsky and C.D. Roberts, QCD running couplings and effective charges, arXiv:2303.00723 [INSPIRE].
K.G. Chetyrkin, J.H. Kuhn and A. Kwiatkowski, QCD corrections to the e+e− cross-section and the Z boson decay rate, Phys. Rept. 277 (1996) 189 [hep-ph/9503396] [INSPIRE].
T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model, Phys. Rept. 887 (2020) 1 [arXiv:2006.04822] [INSPIRE].
F. Jegerlehner, The anomalous magnetic moment of the muon, Springer, Cham, Switzerland (2017) [https://doi.org/10.1007/978-3-319-63577-4] [INSPIRE].
BESIII collaboration, Measurement of the cross section for e+e− → hadrons at energies from 2.2324 to 3.6710 GeV, Phys. Rev. Lett. 128 (2022) 062004 [arXiv:2112.11728] [INSPIRE].
KEDR collaboration, Precise measurement of Ruds and R between 1.84 and 3.72 GeV at the KEDR detector, Phys. Lett. B 788 (2019) 42 [arXiv:1805.06235] [INSPIRE].
BESIII collaboration, Design and construction of the BESIII detector, Nucl. Instrum. Meth. A 614 (2010) 345 [arXiv:0911.4960] [INSPIRE].
V.V. Anashin et al., The KEDR detector, Phys. Part. Nucl. 44 (2013) 657 [INSPIRE].
M. Davier, A. Hocker and Z. Zhang, The physics of hadronic tau decays, Rev. Mod. Phys. 78 (2006) 1043 [hep-ph/0507078] [INSPIRE].
K.G. Chetyrkin, A.L. Kataev and F.V. Tkachov, Higher order corrections to σtot(e+e− → hadrons) in quantum chromodynamics, Phys. Lett. B 85 (1979) 277 [INSPIRE].
S.G. Gorishnii, A.L. Kataev and S.A. Larin, The \( O\left({\alpha}_s^3\right) \)-corrections to σtot(e+e− → hadrons) and Γ(τ − → ντ + hadrons) in QCD, Phys. Lett. B 259 (1991) 144 [INSPIRE].
L.R. Surguladze and M.A. Samuel, Total hadronic cross-section in e+e− annihilation at the four loop level of perturbative QCD, Phys. Rev. Lett. 66 (1991) 560 [Erratum ibid. 66 (1991) 2416] [INSPIRE].
P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Order \( {\alpha}_s^4 \) QCD corrections to Z and τ decays, Phys. Rev. Lett. 101 (2008) 012002 [arXiv:0801.1821] [INSPIRE].
P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Adler function, Bjorken sum rule, and the Crewther relation to order \( {\alpha}_s^4 \) in a general gauge theory, Phys. Rev. Lett. 104 (2010) 132004 [arXiv:1001.3606] [INSPIRE].
P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn and J. Rittinger, Complete \( O\left({\alpha}_s^4\right) \) QCD corrections to hadronic Z-decays, Phys. Rev. Lett. 108 (2012) 222003 [arXiv:1201.5804] [INSPIRE].
P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn and J. Rittinger, Vector correlator in massless QCD at order \( O\left({\alpha}_s^4\right) \) and the QED β-function at five loop, JHEP 07 (2012) 017 [arXiv:1206.1284] [INSPIRE].
P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn and J. Rittinger, Adler function, sum rules and Crewther relation of order \( O\left({\alpha}_s^4\right) \): the singlet case, Phys. Lett. B 714 (2012) 62 [arXiv:1206.1288] [INSPIRE].
K.G. Chetyrkin and J.H. Kuhn, Mass corrections to the Z decay rate, Phys. Lett. B 248 (1990) 359 [INSPIRE].
K.G. Chetyrkin and J.H. Kuhn, Quartic mass corrections to Rhad, Nucl. Phys. B 432 (1994) 337 [hep-ph/9406299] [INSPIRE].
K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, Heavy quark vacuum polarization to three loops, Phys. Lett. B 371 (1996) 93 [hep-ph/9511430] [INSPIRE].
K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, Three loop polarization function and \( O\left({\alpha}_s^2\right) \) corrections to the production of heavy quarks, Nucl. Phys. B 482 (1996) 213 [hep-ph/9606230] [INSPIRE].
K.G. Chetyrkin, R.V. Harlander and J.H. Kuhn, Quartic mass corrections to Rhad at \( O\left({\alpha}_s^3\right) \), Nucl. Phys. B 586 (2000) 56 [Erratum ibid. 634 (2002) 413] [hep-ph/0005139] [INSPIRE].
R.V. Harlander and M. Steinhauser, rhad: a program for the evaluation of the hadronic R ratio in the perturbative regime of QCD, Comput. Phys. Commun. 153 (2003) 244 [hep-ph/0212294] [INSPIRE].
Y. Kiyo, A. Maier, P. Maierhofer and P. Marquard, Reconstruction of heavy quark current correlators at \( O\left({\alpha}_s^3\right) \), Nucl. Phys. B 823 (2009) 269 [arXiv:0907.2120] [INSPIRE].
A. Czarnecki and J.H. Kuhn, Nonfactorizable QCD and electroweak corrections to the hadronic Z boson decay rate, Phys. Rev. Lett. 77 (1996) 3955 [hep-ph/9608366] [INSPIRE].
R. Harlander, T. Seidensticker and M. Steinhauser, Complete corrections of O(ααs) to the decay of the Z boson into bottom quarks, Phys. Lett. B 426 (1998) 125 [hep-ph/9712228] [INSPIRE].
J.H. Kuhn and M. Steinhauser, A theory driven analysis of the effective QED coupling at MZ, Phys. Lett. B 437 (1998) 425 [hep-ph/9802241] [INSPIRE].
A.D. Martin, J. Outhwaite and M.G. Ryskin, The R ratio in e+e−, the determination of \( \alpha \left({M}_Z^2\right) \) and a possible nonperturbative gluonic contribution, J. Phys. G 26 (2000) 600 [hep-ph/9912252] [INSPIRE].
S.J. Brodsky and X.-G. Wu, Scale setting using the extended renormalization group and the principle of maximum conformality: the QCD coupling constant at four loops, Phys. Rev. D 85 (2012) 034038 [Erratum ibid. 86 (2012) 079903] [arXiv:1111.6175] [INSPIRE].
S.J. Brodsky and L. Di Giustino, Setting the renormalization scale in QCD: the principle of maximum conformality, Phys. Rev. D 86 (2012) 085026 [arXiv:1107.0338] [INSPIRE].
M. Mojaza, S.J. Brodsky and X.-G. Wu, Systematic all-orders method to eliminate renormalization-scale and scheme ambiguities in perturbative QCD, Phys. Rev. Lett. 110 (2013) 192001 [arXiv:1212.0049] [INSPIRE].
S.J. Brodsky and X.-G. Wu, Eliminating the renormalization scale ambiguity for top-pair production using the principle of maximum conformality, Phys. Rev. Lett. 109 (2012) 042002 [arXiv:1203.5312] [INSPIRE].
S.J. Brodsky, M. Mojaza and X.-G. Wu, Systematic scale-setting to all orders: the principle of maximum conformality and commensurate scale relations, Phys. Rev. D 89 (2014) 014027 [arXiv:1304.4631] [INSPIRE].
J.-M. Shen, X.-G. Wu, B.-L. Du and S.J. Brodsky, Novel all-orders single-scale approach to QCD renormalization scale-setting, Phys. Rev. D 95 (2017) 094006 [arXiv:1701.08245] [INSPIRE].
J. Yan, Z.-F. Wu, J.-M. Shen and X.-G. Wu, Precise perturbative predictions from fixed-order calculations, J. Phys. G 50 (2023) 045001 [arXiv:2209.13364] [INSPIRE].
X.-G. Wu, J.-M. Shen, B.-L. Du and S.J. Brodsky, Novel demonstration of the renormalization group invariance of the fixed-order predictions using the principle of maximum conformality and the C-scheme coupling, Phys. Rev. D 97 (2018) 094030 [arXiv:1802.09154] [INSPIRE].
X.-G. Wu et al., The QCD renormalization group equation and the elimination of fixed-order scheme-and-scale ambiguities using the principle of maximum conformality, Prog. Part. Nucl. Phys. 108 (2019) 103706 [arXiv:1903.12177] [INSPIRE].
E.C.G. Stueckelberg de Breidenbach and A. Petermann, Normalization of constants in the quanta theory, Helv. Phys. Acta 26 (1953) 499 [INSPIRE].
N.N. Bogolyubov and D.V. Shirkov, Application of the renormalization group to improvement of formulas in perturbation theory, Dokl. Akad. Nauk SSSR (N.S.) 103 (1955) 391.
A. Peterman, Renormalization group and the deep structure of the proton, Phys. Rept. 53 (1979) 157 [INSPIRE].
X.-G. Wu et al., Renormalization group invariance and optimal QCD renormalization scale-setting, Rept. Prog. Phys. 78 (2015) 126201 [arXiv:1405.3196] [INSPIRE].
S.J. Brodsky and X.-G. Wu, Self-consistency requirements of the renormalization group for setting the renormalization scale, Phys. Rev. D 86 (2012) 054018 [arXiv:1208.0700] [INSPIRE].
X.-G. Wu, S.J. Brodsky and M. Mojaza, The renormalization scale-setting problem in QCD, Prog. Part. Nucl. Phys. 72 (2013) 44 [arXiv:1302.0599] [INSPIRE].
X.-C. Zheng et al., Reanalysis of the BFKL Pomeron at the next-to-leading logarithmic accuracy, JHEP 10 (2013) 117 [arXiv:1308.2381] [INSPIRE].
M. Gell-Mann and F.E. Low, Quantum electrodynamics at small distances, Phys. Rev. 95 (1954) 1300 [INSPIRE].
S.J. Brodsky, G.P. Lepage and P.B. Mackenzie, On the elimination of scale ambiguities in perturbative quantum chromodynamics, Phys. Rev. D 28 (1983) 228 [INSPIRE].
S.L. Adler, Some simple vacuum polarization phenomenology: e+e− → hadrons: the μ-mesic atom X-ray discrepancy and \( {g}_{\mu}^{-2} \), Phys. Rev. D 10 (1974) 3714 [INSPIRE].
H.-Y. Bi et al., Degeneracy relations in QCD and the equivalence of two systematic all-orders methods for setting the renormalization scale, Phys. Lett. B 748 (2015) 13 [arXiv:1505.04958] [INSPIRE].
A.L. Kataev and V.V. Starshenko, Estimates of the higher order QCD corrections to Rs, Rτ and deep inelastic scattering sum rules, Mod. Phys. Lett. A 10 (1995) 235 [hep-ph/9502348] [INSPIRE].
D.V. Shirkov, Analytic perturbation theory for QCD observables, Theor. Math. Phys. 127 (2001) 409 [hep-ph/0012283] [INSPIRE].
G.M. Prosperi, M. Raciti and C. Simolo, On the running coupling constant in QCD, Prog. Part. Nucl. Phys. 58 (2007) 387 [hep-ph/0607209] [INSPIRE].
A.V. Nesterenko, Electron-positron annihilation into hadrons at the higher-loop levels, Eur. Phys. J. C 77 (2017) 844 [arXiv:1707.00668] [INSPIRE].
A.V. Nesterenko, Explicit form of the R-ratio of electron-positron annihilation into hadrons, J. Phys. G 46 (2019) 115006 [arXiv:1902.06504] [INSPIRE].
A.V. Nesterenko, Recurrent form of the renormalization group relations for the higher-order hadronic vacuum polarization function perturbative expansion coefficients, J. Phys. G 47 (2020) 105001 [arXiv:2004.00609] [INSPIRE].
M. Cacciari and N. Houdeau, Meaningful characterisation of perturbative theoretical uncertainties, JHEP 09 (2011) 039 [arXiv:1105.5152] [INSPIRE].
J.-M. Shen et al., Extending the predictive power of perturbative QCD using the principle of maximum conformality and the Bayesian analysis, Eur. Phys. J. C 83 (2023) 326 [arXiv:2209.03546] [INSPIRE].
M. Bonvini, Probabilistic definition of the perturbative theoretical uncertainty from missing higher orders, Eur. Phys. J. C 80 (2020) 989 [arXiv:2006.16293] [INSPIRE].
C. Duhr, A. Huss, A. Mazeliauskas and R. Szafron, An analysis of Bayesian estimates for missing higher orders in perturbative calculations, JHEP 09 (2021) 122 [arXiv:2106.04585] [INSPIRE].
E. Braaten, S. Narison and A. Pich, QCD analysis of the tau hadronic width, Nucl. Phys. B 373 (1992) 581 [INSPIRE].
Y.L. Dokshitzer, G. Marchesini and B.R. Webber, Dispersive approach to power behaved contributions in QCD hard processes, Nucl. Phys. B 469 (1996) 93 [hep-ph/9512336] [INSPIRE].
M. Davier and A. Hocker, Improved determination of \( \alpha \left({M}_Z^2\right) \) and the anomalous magnetic moment of the muon, Phys. Lett. B 419 (1998) 419 [hep-ph/9801361] [INSPIRE].
M. Gell-Mann and M. Levy, The axial vector current in beta decay, Nuovo Cim. 16 (1960) 705 [INSPIRE].
Y. Nambu, Axial vector current conservation in weak interactions, Phys. Rev. Lett. 4 (1960) 380 [INSPIRE].
M. Davier and A. Hocker, New results on the hadronic contributions to \( \alpha \left({M}_Z^2\right) \) and to (g − 2)μ, Phys. Lett. B 435 (1998) 427 [hep-ph/9805470] [INSPIRE].
ALEPH collaboration, Measurement of the spectral functions of axial-vector hadronic tau decays and determination of \( {\alpha}_S\left({M}_{\tau}^2\right) \), Eur. Phys. J. C 4 (1998) 409 [INSPIRE].
L.J. Reinders, H. Rubinstein and S. Yazaki, Hadron properties from QCD sum rules, Phys. Rept. 127 (1985) 1 [INSPIRE].
R.A. Bertlmann et al., Determination of the gluon condensate and the four quark condensate via FESR, Z. Phys. C 39 (1988) 231 [INSPIRE].
Gfitter Group collaboration, The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].
A.A. Pivovarov, Renormalization group analysis of the tau lepton decay within QCD, Sov. J. Nucl. Phys. 54 (1991) 676 [hep-ph/0302003] [INSPIRE].
F. Le Diberder and A. Pich, The perturbative QCD prediction to Rτ revisited, Phys. Lett. B 286 (1992) 147 [INSPIRE].
G. Cvetic, M. Loewe, C. Martinez and C. Valenzuela, Modified contour-improved perturbation theory, Phys. Rev. D 82 (2010) 093007 [arXiv:1005.4444] [INSPIRE].
M. Beneke, D. Boito and M. Jamin, Perturbative expansion of τ hadronic spectral function moments and αs extractions, JHEP 01 (2013) 125 [arXiv:1210.8038] [INSPIRE].
M. Davier et al., Update of the ALEPH non-strange spectral functions from hadronic τ decays, Eur. Phys. J. C 74 (2014) 2803 [arXiv:1312.1501] [INSPIRE].
D. Boito et al., Strong coupling from the revised ALEPH data for hadronic τ decays, Phys. Rev. D 91 (2015) 034003 [arXiv:1410.3528] [INSPIRE].
A. Pich and A. Rodríguez-Sánchez, Determination of the QCD coupling from ALEPH τ decay data, Phys. Rev. D 94 (2016) 034027 [arXiv:1605.06830] [INSPIRE].
C. Ayala, G. Cvetic and D. Teca, Using improved operator product expansion in Borel-Laplace sum rules with ALEPH τ decay data, and determination of pQCD coupling, Eur. Phys. J. C 82 (2022) 362 [arXiv:2112.01992] [INSPIRE].
A. Pich and A. Rodríguez-Sánchez, Violations of quark-hadron duality in low-energy determinations of αs, JHEP 07 (2022) 145 [arXiv:2205.07587] [INSPIRE].
D. Boito et al., Strong coupling from e+e− → hadrons below charm, Phys. Rev. D 98 (2018) 074030 [arXiv:1805.08176] [INSPIRE].
F. Herren and M. Steinhauser, Version 3 of RunDec and CRunDec, Comput. Phys. Commun. 224 (2018) 333 [arXiv:1703.03751] [INSPIRE].
G.S. Huang et al., Physics on the high intensive electron position accelerator at 2 7 GeV (in Chinese), Chin. Sci. Bull. 62 (2017) 1226 [INSPIRE].
H.P. Peng, Y.H. Zheng and X.R. Zhou, Super tau-charm facility of China, Physics 49 (2020) 513 [INSPIRE].
M. Achasov et al., STCF conceptual design report: volume I — physics & detector, arXiv:2303.15790 [INSPIRE].
S.J. Brodsky and E. De Rafael, Suggested boson-lepton pair couplings and the anomalous magnetic moment of the muon, Phys. Rev. 168 (1968) 1620 [INSPIRE].
B.E. Lautrup and E. De Rafael, Calculation of the sixth-order contribution from the fourth-order vacuum polarization to the difference of the anomalous magnetic moments of muon and electron, Phys. Rev. 174 (1968) 1835 [INSPIRE].
A. Keshavarzi, D. Nomura and T. Teubner, Muon g – 2 and \( \alpha \left({M}_Z^2\right) \): a new data-based analysis, Phys. Rev. D 97 (2018) 114025 [arXiv:1802.02995] [INSPIRE].
M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to \( \alpha \left({M}_Z^2\right) \), Eur. Phys. J. C 80 (2020) 241 [Erratum ibid. 80 (2020) 410] [arXiv:1908.00921] [INSPIRE].
Acknowledgments
We are grateful to Prof. Guang-Shun Huang, Hai-Ming Hu, Shu-Lei Zhang, Andrei Kataev, and Sergey Mikhailov for helpful discussions. This work was supported in part by the Natural Science Foundation of China under Grant No.11905056, No.12147102, No.12175025 and No.12265011.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2303.11782
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Shen, JM., Qin, BH., Yan, J. et al. Novel method to reliably determine the QCD coupling from Ruds measurements and its effects to muon g − 2 and \( \alpha \left({M}_Z^2\right) \) within the tau-charm energy region. J. High Energ. Phys. 2023, 109 (2023). https://doi.org/10.1007/JHEP07(2023)109
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2023)109