[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Complexity of infinite trees

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1983)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 154))

Included in the following conference series:

  • 129 Accesses

Abstract

Rational schemes interpreted over derived algebras permit a simple algebraic analysis of higher type recursion. Their equivalence is characterized by infinite trees. Measuring their complexity by the size of finite subtrees we obtain a direct proof of the recursion hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bekić, H: Definable operations in general algebras, and the theory of automata and flowcharts, Research Report, IBM Lb., Vienna, 1969

    Google Scholar 

  2. Damm, W.: The IO-and OI-hierarchies Theoret. Comput. Sci. 20 (1982) 2, 95–208

    Google Scholar 

  3. Goguen, J.A. et. al.: Initial algebra semantics and continuous algebras Journal ACM 24 (1977) 1, 68–95

    Google Scholar 

  4. Indermark, K.: On rational definitions in complete algebras without rank Theoret. Comput. Sci. 21 (1982), 281–313

    Google Scholar 

  5. Maibaum, T.S.E.: A generalized approach to formal languages Journal Comp. Syst. Sci. 8 (1974), 409–439

    Google Scholar 

  6. Nivat, M.: Langages algébriques sur le magma libre et sémantique des schémas de programme in: Automata, Languages, and Programming (M. Nivat, ed.) North-Holland P.C. (1972), 293–308

    Google Scholar 

  7. Nivat, M.: On the interpretation of recursion polyadic program schemes-Symposia Matematica 15, Rome 1975, 255–281

    Google Scholar 

  8. Wagner, E.G.: An algebraic theory of recursive definitions and recursive languages — Proc. 3rd ACM Symp. Theory of Computing (1971), 12–23

    Google Scholar 

  9. Wagner, E.G.: Languages for defining sets in arbitrary algebras-Proc. IEEE Conf. SWAT 12 (1971), 192–201

    Google Scholar 

  10. Wand, M.: A concrete approach to abstract recursive definitions-in: Automata, Languages, and Programming (M. Nivat, ed.) North-Holland P.C. (1972), 331–344

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Josep Diaz

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Indermark, K. (1983). Complexity of infinite trees. In: Diaz, J. (eds) Automata, Languages and Programming. ICALP 1983. Lecture Notes in Computer Science, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0036920

Download citation

  • DOI: https://doi.org/10.1007/BFb0036920

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12317-0

  • Online ISBN: 978-3-540-40038-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics