[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Automata theory meets circuit complexity

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1989)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 372))

Included in the following conference series:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ajtai, Σ 11 formulae on finite structures, Annals of Pure and Applied Logic24 (1983), pp. 1–48.

    Article  Google Scholar 

  2. D.A. Barrington, Bounded-width polynomial-size branching programs recognize exactly those languages in NC1, Proc. of the 18th ACM Symp. on the Theory of Computing (1986), pp. 1–5.

    Google Scholar 

  3. D. Mix Barrington, K. Compton, H. Straubing and D. Thérien, Regular languages in NC1, Boston College Technical Report TR-BCCS-88-02, 1988.

    Google Scholar 

  4. D. Mix Barrington, N. Immerman and H. Straubing, On uniformity within NC1, Proc. of the 3rd Annual Conf. on the Structure in Complexity Theory, IEEE Computer Society Press (1988), pp. 47–59.

    Google Scholar 

  5. D.A. Barrington, H. Straubing and D. Thérien, unpublished manuscript, 1988.

    Google Scholar 

  6. D.A. Barrington and D. Thérien, Finite monoids and the fine structure of NC1, Proc. of the 19th ACM Symp. on the Theory of Computing (1987), pp. 101–109.

    Google Scholar 

  7. D.A. Barrington and D. Thérien, Non-uniform automata over groups, Proc. of the 14th International Colloquium on Automata, Languages and Programming, Springer Lecture Notes in Comp. Sci. 267 (1987), pp. 163–173.

    Google Scholar 

  8. A. Borodin, D. Dolev, F. Fich and W. Paul, Bounds for width-two branching programs, Proc. of the 15th ACM Symp. on the Theory of Computing (1983), pp. 97–93.

    Google Scholar 

  9. S.A. Cook, A taxonomy of problems with fast parallel solutions, Information and Computation64 (1985), pp. 2–22.

    Google Scholar 

  10. S. Eilenberg, Automata, Languages and Machines, Academic Press, Vol. A (1974), Vol. B, (1976).

    Google Scholar 

  11. M.L. Furst, J.B. Saxe and M. Sipser, Parity, circuits, and the polynomial-time hierarchy, Proc. of the 22nd IEEE Symp. on the Foundations of Computer Science (1981), pp. 260–270. Journal version Math. Systems Theory18 (1984), 13–27.

    Google Scholar 

  12. J.T. Håstad, Computational Limitations for Small-Depth Circuits, Ph. D. Thesis, M.I.T., ACM Doctoral Dissertation Awards, MIT Press (1987).

    Google Scholar 

  13. J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley (1979).

    Google Scholar 

  14. D.S. Johnson, The NP-completeness column: and ongoing guide, J. of Algorithms7:2 (June 1986), pp. 289–305.

    Article  Google Scholar 

  15. S.C. Kleene, Representation of events in nerve nets and finite automata, Automata Studies, (Shannon and McCarthy, eds), Princeton University Press, Princeton (1954), pp 3–41.

    Google Scholar 

  16. J. Mullins, Programmes sur des petites variétés de monoïdes apériodiques, Mémoire de maîtrise, Dép. I.R.O., Univ. de Montréal, en préparation (1988).

    Google Scholar 

  17. P. Péladeau, Classes of boolean circuits and varieties of finite monoids, draft, May 1988.

    Google Scholar 

  18. J.-E. Pin, Variétés de langages formels, Masson (1984).

    Google Scholar 

  19. J.-E. Pin, H. Straubing and D. Thérien, Locally trivial categories and unambiguous concatenation, J. of Pure and Applied Algebra52 (1988), pp. 297–311.

    Article  Google Scholar 

  20. A.A. Razborov, Lower bounds for the size of circuits of bounded depth with basis {&, ⊕}, Mathematicheskie Zametki41:4 (April 1987), 598–607 (in Russian). English translation Mathematical Notes of the Academy of Sciences of the USSR41:4 (Sept. 1987), pp. 333–338.

    Google Scholar 

  21. M.P. Schützenberger, On finite monoids having only trivial subgroups, Information and Control8 (1965), pp. 190–194.

    Article  Google Scholar 

  22. I. Simon, Hierarchies of events of dot-depth one, Ph. D. Thesis, University of Waterloo (1972).

    Google Scholar 

  23. M. Sipser, Borel sets and circuit complexity, Proc. of the 15th ACM Symp. on the Theory of Computing (1983), pp. 61–69.

    Google Scholar 

  24. R. Smolensky, Algebraic methods in the theory of lower bounds for Boolean circuit complexity, Proc. of the 19th ACM Symp. on the Theory of Computing (1987), pp. 77–82.

    Google Scholar 

  25. H. Straubing, Varieties of recognizable sets whose syntactic monoids contain solvable groups, Ph. D. Thesis, University of California at Berkeley (1978).

    Google Scholar 

  26. D. Thérien, Classification of finite monoids: the language approach, Theoretical Computer Science14 (1981), pp. 195,208.

    Article  Google Scholar 

  27. D. Thérien, Subword counting and nilpotent groups, in Combinatorics on Words: Progress and Perspectives (L.J. Cummings ed.), Academic Press (1983), pp. 297–305.

    Google Scholar 

  28. A. C. Yao, Separating the polynomial-time hierarchy by oracles, Proc. of the 26th IEEE Symp. on the Foundations of Computer Science (1985), pp. 1–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Giorgio Ausiello Mariangiola Dezani-Ciancaglini Simonetta Ronchi Della Rocca

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McKenzie, P., Thérien, D. (1989). Automata theory meets circuit complexity. In: Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds) Automata, Languages and Programming. ICALP 1989. Lecture Notes in Computer Science, vol 372. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035785

Download citation

  • DOI: https://doi.org/10.1007/BFb0035785

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51371-1

  • Online ISBN: 978-3-540-46201-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics