Abstract
Contrast enhancement is a fundamental step in the display of digital images. The end result of display is the perceived brightness occurring in the human observer; design of effective contrast enhancement mappings therefore requires understanding of human brightness perception. Recent advances in this area have emphasized the importance of image structure in determining our perception of brightnesses, and consequently contrast enhancement methods which attempt to use structural information are being widely investigated. In this paper we present two promising methods we feel are strong competitors to presently-used techniques. We begin with a survey of contrast enhancement techniques for use with medical images. Classical adaptive algorithms use one or more statistics of the intensity distribution of local image areas to compute the displayed pixel values. More recently, techniques which attempt to take direct account of local structural information have been developed. The use of this structural information, in particular edge strengths, in defining contextual regions seems especially important. Two new methods based on this idea are presented and discussed, namely edge-affected unsharp masking followed by contrast-limited adaptive histogram equalization (AHE), and diffusive histogram equalization, a variant of AHE in which weighted contextual regions are calculated by edge-affected diffusion. Results on typical medical images are given.
Preview
Unable to display preview. Download preview PDF.
References
Beghdadi A and Le Negrate A (1989). Contrast enhancement technique based on local detection of edges. Computer Vision, Graphics, and Image Processing 46: 162–174.
Blume H and Kamiya K (1987). Auto-ranging and normalization versus histogram modifications for automatic image processing of digital radiographs. Proc. S.P.I.E. 767 Medical Imaging: 371–386.
Cormack J and Hutton BF (1981). Quantitation and optimization of digitized scintigraphic display characteristics using information theory. Medical Image Processing: Proceedings of the VIIth International Meeting on Information Processing in Medical Imaging, Stanford University: 240–263.
Dhawan AT, Buelloni G and Gordon R (1986). Enhancement of mammographic features by optimal neighborhood image processing. IEEE Transactions on Medical Imaging MI-5 No. 1: 8–15.
Frei W (1977). Image enhancement by histogram hyperbolization. Computer Graphics and Image Processing 6: 286–294.
Gerig, G and de Moliner R (1989). Personal communication.
Gordon R (1986). Enhancement of mammographic features by optimal neighborhood image processing. IEEE Transactions on Medical Imaging MI-5 No. 1: 8–15.
Grossberg S (1984). Neural dynamics of brightness perception: features, boundaries, diffusion, and resonance. Perception and Psychophysics 36 (5): 428–456.
Harris, Jr. JL (1977). Constant variance enhancement: a digital processing technique. Applied Optics 16: 1268–1271.
Kim V and Yaroslavskii L (1986). Rank algorithms for picture processing. Computer Vision, Graphics, and Image Processing 35: 234–258.
Loo LD, Doi K and Metz C (1985). Investigation of basic imaging properties in digital radiography 4. Effect of unsharp masking on the detectability of simple patterns. Medical Physics 12: 209–214.
Perona P and Malik J (1988). Scale-space and edge detection using anisotropic diffusion. Report UCB/CSD 88/483, Computer Science Division University of California, Berkeley, CA.
Pizer SM (1981a). Intensity mappings to linearize display devices. Computer Graphics and Image Processing 17: 262–268.
Pizer SM (1981b). An automatic intensity mapping for the display of CT scans and other images. Medical Image Processing: Proceedings of the VIIth International Meeting on Information Processing in Medical Imaging, Stanford University: 276–309.
Pizer SM, Amburn EP, Austin JD, Cromartie R, Geselowitz A, ter Haar Romeny B, Zimmerman JB and Zuiderveld K (1987). Adaptive histogram equalization and its variations. Computer Vision, Graphics, and Image Processing 39: 355–368.
Rehm K, Seely GW, Dallas WJ, Ovitt TW and Seeger JF (1990). Design and testing of artifact-suppressed adaptive histogram equalization: A contrast-enhancement technique for the display of digital chest radiographs. Journal of Thoracic Imaging 5, No. 1: 85–91.
Sorenson J (1987). Effects of improved contrast on lung-nodule detection A clinical ROC study. Investigative Radiology 22: 772–780.
Wallis R (1976). An approach to the space variant restoration and enhancement of images. Proceedings of the Symposium on Current Mathematical Problems in Image Science, Monterey, California, Naval Postgraduate School.
Zimmerman JB (1985). Effectiveness of Adaptive Contrast Enhancement. Ph.D. dissertation, Department of Computer Science, The University of North Carolina at Chapel.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1991 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cromartie, R., Pizer, S.M. (1991). Edge-affected context for adaptive contrast enhancement. In: Colchester, A.C.F., Hawkes, D.J. (eds) Information Processing in Medical Imaging. IPMI 1991. Lecture Notes in Computer Science, vol 511. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0033774
Download citation
DOI: https://doi.org/10.1007/BFb0033774
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-54246-9
Online ISBN: 978-3-540-47521-7
eBook Packages: Springer Book Archive