Abstract
In this paper, we show that tomographic images are degraded by the unsuitable discretisation of continuous schemes, and the non-trivial null space in the case of angular sampling. Usually these two types of degradations are not studied separately. However, discretisation can be performed properly, while the null space is irreducible. For this reason, we study the relationships between continuous and discrete versions of a direct reconstruction method (FBP). They are characterized by an interpolation / sampling kernel, called the Pixel Intensity Distribution Model (PIDM). By defining the latter as B-spline functions, the existence and the uniqueness of the solution is guaranteed. It follows that projections must be oversampled. We test the robustness of this exact solution (for an infinite number of projections) by decreasing the number of angles. PIDM results are much better then FBP ones, showing that FBP reconstructed images are degraded not only by the null space, but also by unsuitable discretisation.
We also analyze the influence of degradations induced by an imaging device (mechanical instability and blur) and by projection noise in SPECT. Discretisation-related degradations depend on projection sampling. For this reason, proper oversampling is achieved when the corresponding degradations are negligible in comparison to the ones induced by the imaging device.
Our algorithm is constrained by the amount of information input to the system and controlled by the number of projection angles and the PIDM order. Optimal values of these parameters could be found for a predefined task using the ROC curve methodology.
Preview
Unable to display preview. Download preview PDF.
References
Radon J. (1917). Uber die Bestimmung von Functionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten. Berichte Sachsische Academie der Wissenchaften, Leipzig, Math. — Phys. Kl, Vol-69:262–267.
Beylkin G. (1987). Discrete Radon Transform. IEEE Trans. Acoust., Speech Signal Proces. ASSP-35(2):162–172.
Brooks R.A., Weiss G.H. and Talbert A.J. (1978). A new approach to interpolation in Computed Tomography. J. Comp. Ass. Tomography Vol. 2:577–585.
Gordon R. (1974). A tutorial on ART. IEEE Trans. Nucl. Sci., NS-21:78–93.
Guédon J-P. and Bizais Y. (1990). Projection and Backprojection models and projection sampling in Tomography. SPIE Medical Imaging IV, Vol 1231:206–217.
Guédon J-P (1990). Sampling problems in Tomography, Ph.D. dissertation (in French), ENSM, Nantes.
Guédon J-P. and Bizais Y. (1991). A Spline based tomographic reconstruction method. SPIE Medical Imaging V, Vol 1443.
Hanson K. (1989). Optimisation for object localization of the constrained algebraic reconstruction technique. SPIE., Medical Imaging III, Vol 1090.
Hanson K. (1989). Optimization of the constrained algebraic reconstruction technique for a variety of visual tasks. Proc. of the XIth IPMI Intern. Conference, Progress in clinical and biological research Vol. 363, Orthendhal & Llacer Eds., Wiley-Liss.
Joseph P.M. (1982). An improved algorithm for reprojection rays through pixel images. IEEE Trans. on Med. Imaging, TMI-1:192–196.
Katz M.B. (1978). Questions of uniqueness and resolution in reconstruction from projections. Lect. Notes Biomath. 26, Ed S. Levin, Springer-Verlag, Berlin.
Louis A.K. (1981). Orthogonal function series expansions and the null-space of the Radon transform. medical image processing group, Technical report MIPG52, Buffalo, Univ. of New-York.
Ludwig D. (1966). The Radon transform on Euclidean space. Comm. on pure and applied mathematics, Vol XIX:49–81.
Myers K.J. and Hanson K.M. (1990). Comparison of the algebraic reconstruction technique with the maximum entropy reconstruction technique for a variety of detection tasks. SPIE Medical Imaging IV, Vol 1231:176–187.
Myers K.J., Rolland J.P., Barrett H.H. and Wagner R.F. (1990). Aperture optimization for emission imaging: effect of a spatially varying background. JOSA, Vol. 7:1279–1293.
Schmidlin P. and Doll J. (1989). Implementation of iterative reconstruction in PET. Proc. of the XIth IPMI Conference, Berkeley, CA, Progress in clinical and biological research. Vol. 363, Orthendhal & Llacer Eds., Wiley-Liss.
Todd-Pokropek A. (1982). The mathematics and physics of emission computed tomography. Radionuclide Imaging 3–31.
Unser M., Aldroubi A. and Eden M. (1990). A sampling Theory for Polynomial Splines. Intern. Symp. on Infor. Theory and its Appl. ISITA90:279–282.
Unser M., Aldroubi A. and Eden M. (1991). Recursive Regularization Filters:Design, Properties, and Applications. IEEE trans. on pattern anal. mach. intel. PAMI-13-3.
Wagner R.F. (1983). Low contrast sensitivity of radiologic, CT, nuclear medicine, and ultrasound medical imaging systems. IEEE Trans. on Medical Imaging, TMI-2:105–121.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1991 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Guedon, JP.V., Bizais, Y.J. (1991). Spline-based regularisation for discrete FBP reconstruction. In: Colchester, A.C.F., Hawkes, D.J. (eds) Information Processing in Medical Imaging. IPMI 1991. Lecture Notes in Computer Science, vol 511. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0033742
Download citation
DOI: https://doi.org/10.1007/BFb0033742
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-54246-9
Online ISBN: 978-3-540-47521-7
eBook Packages: Springer Book Archive