[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Sparse oracles, lowness, and highness

  • Communications
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1984 (MFCS 1984)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 176))

  • 128 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Adleman, Two theorems on random polynomial time. Proc. 19th IEEE Symp. Foundations of Computer Science (1978), 75–83.

    Google Scholar 

  2. T. Baker, J. Gill, and R. Solovay, Relativizations of the P = ? NP question. SIAM J. Computing 4 (1975), 161–173.

    Google Scholar 

  3. T. Baker and A. Selman, A second step towards the polynomial-time hierarchy. Theoret. Comput. Sci. 8 (1979), 177–187.

    Google Scholar 

  4. P. Berman, Relationships between density and deterministic complexity of NP-complete languages. Proc. 5th ICALP, Lecture Notes in Computer Science 67 (1978), 63–71.

    Google Scholar 

  5. L. Berman and J. Hartmanis, On isomorphisms and density of NP and other complete sets. SIAM J. Computing 6 (1977), 305–322.

    Google Scholar 

  6. S. Fortune, A note on sparse complete sets. SIAM J. Computing 8 (1979), 431–433.

    Google Scholar 

  7. R. Karp and R. Lipton, Some connections between nonuniform and uniform complexity classes. Proc. 12th ACM Symp. Theory of Computing (1980), 302–309.

    Google Scholar 

  8. K. Ko, On self-reducibility and weak P-selectivity. J. Comput. Syst. Sci. 26 (1982), 209–221.

    Google Scholar 

  9. K. Ko and U. Schöning, On circuit-size complexity and the low hierarchy in NP. SIAM J. Computing 13 (1984), to appear.

    Google Scholar 

  10. T. Long, A note on sparse oracles for NP. J. Comput. Syst. Sci. 24 (1982), 224–232.

    Google Scholar 

  11. T. Long, Strong nondeterministic polynomial-time reducibilities. Theoret. Comput. Sci. 21 (1982), 1–25.

    Google Scholar 

  12. T. Long and A. Selman, Relativizing complexity classes with sparse oracles. Unpublished abstract, June 1983.

    Google Scholar 

  13. S. Mahaney, Sparse complete sets for NP: solution to a conjecture of Berman and Hartmanis. J. Comput. Syst. Sci. 25 (1982), 130–143.

    Google Scholar 

  14. A. Meyer and M. Paterson, With what frequency are apparently intractable problems difficult? M.I.T. Technical Report, Feb. 1979.

    Google Scholar 

  15. U. Schöning, A low-and a high-hierarchy in NP. J. Comput. Syst. Sci. 27 (1983), 14–28.

    Google Scholar 

  16. U. Schöning, A note on small generators. Submitted for publication.

    Google Scholar 

  17. L. Stockmeyer, The polynomial-time hierarchy. Theoret. Comput. Sci. 3 (1976), 1–22.

    Google Scholar 

  18. C. Wrathall, Complete sets and the polynomial-time hierarchy. Theoret. Comput. Sci. 3 (1976), 23–33.

    Google Scholar 

  19. C. Yap, Some consequences of non-uniform conditions on uniform classes. Theoret. Comput. Sci. 27 (1984), 287–300.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. P. Chytil V. Koubek

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Balcázar, J.L., Book, R.V., Schöning, U. (1984). Sparse oracles, lowness, and highness. In: Chytil, M.P., Koubek, V. (eds) Mathematical Foundations of Computer Science 1984. MFCS 1984. Lecture Notes in Computer Science, vol 176. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0030298

Download citation

  • DOI: https://doi.org/10.1007/BFb0030298

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13372-8

  • Online ISBN: 978-3-540-38929-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics