[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Self-organizing data structures

  • Chapter
  • First Online:
Online Algorithms

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1442))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Abramson. Information Theory and Coding. McGraw-Hill, New York, 1983.

    Google Scholar 

  2. G.M. Adel'son-Vel'skii and E.M. Landis. An algorithm for the organization of information. Soviet Math. Dokl., 3:1259–1262, 1962.

    Google Scholar 

  3. S. Albers. Unpublished result.

    Google Scholar 

  4. S. Albers. Improved randomized on-line algorithms for the list update problem. In Proc. of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 412–419, 1995.

    Google Scholar 

  5. S. Albers and M. Mitzenmacher. Average case analyses of list update algorithms, with applications to data compression. In Proc. of the 23rd International Colloquium on Automata, Languages and Programming, Springer Lecture Notes in Computer Science, Volume 1099, pages 514–525, 1996.

    Google Scholar 

  6. S. Albers, B. von Stengel, and R. Werchner. A combined BIT and TIMESTAMP algorithm for the list update problem. Information Processing Letters, 56:135–139, 1995.

    Article  Google Scholar 

  7. B. Allen and I. Munro. Self-organizing binary search trees. Journal of the ACM, 25(4):526–535, October 1978.

    Article  Google Scholar 

  8. E.J. Anderson, P. Nash, and R.R. Weber. A counterexample to a conjecture on optimal list ordering. Journal on Applied Probability, 19:730–732, 1982.

    Google Scholar 

  9. C.R. Aragon and R.G. Seidel. Randomized search trees. In Proc. 30th Symp. on Foundations of Computer Science, pages 540–545, 1989.

    Google Scholar 

  10. R. Bachrach and R. El-Yaniv. Online list accessing algorithms and their applications: Recent empirical evidence. In Proc. of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 53–62, 1997.

    Google Scholar 

  11. J. Bell and G. Gupta. Evaluation of self-adjusting binary search tree techniques. Software—Practice & Experience, 23(4):369–382, April 1993.

    Google Scholar 

  12. T. Bell and D. Kulp. Longest-match string searching for Ziv-Lempel compression. Software—Practice and Experience, 23(7):757–771, July 1993.

    Google Scholar 

  13. S. Ben-David, A. Borodin, R.M. Karp, G. Tardos, and A. Wigderson. On the power of randomization in on-line algorithms. Algorithmica, 11:2–14, 1994.

    Article  Google Scholar 

  14. J.L. Bentley, K.L. Clarkson, and D.B. Levine. Fast linear expected-time algorithms for computing maxima and convex hulls. In Proc. of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms, pages 179–187, 1990.

    Google Scholar 

  15. J.L. Bentley and C.C. McGeoch. Amortized analyses of self-organizing sequential search heuristics. Communication of the ACM, 28:404–411, 1985.

    Article  Google Scholar 

  16. J.L. Bentley, D.S. Sleator, R.E. Tarjan, and V.K. Wei. A locally adaptive data compression scheme. Communication of the ACM, 29:320–330, 1986.

    Google Scholar 

  17. J.R. Bitner. Heuristics that dynamically organize data structures. SIAM Journal on Computing, 8:82–110, 1979.

    Google Scholar 

  18. M. Burrows and D.J. Wheeler. A block-sorting lossless data compression algorithm. Technical Report 124, DEC SRC, 1994.

    Google Scholar 

  19. P.J. Burville and J.F.C. Kingman. On a model for storage and search. Journal on Applied Probability, 10:697–701, 1973.

    Google Scholar 

  20. R. Chaudhuri and H. Hoft. Splaying a search tree in preorder takes linear time. SIGACT News, 24(2):88–93, Spring 1993.

    Article  Google Scholar 

  21. R.P. Cheetham, B.J. Oommen, and D.T.H. Ng. Adaptive structuring of binary search trees using conditional rotations. IEEE Transactions on Knowledge & Data Engineering, 5(4):695–704, 1993.

    Google Scholar 

  22. F.R.K. Chung, D.J. Hajela, and P.D. Seymour. Self-organizing sequential search and hilbert's inequality. In Proc. 17th Annual Symposium on the Theory of Computing, pages 217–223, 1985.

    Google Scholar 

  23. D. Cohen and M.L. Fredman. Weighted binary trees for concurrent searching. Journal of Algorithms, 20(1):87–112, January 1996.

    Article  Google Scholar 

  24. R. Cole. On the dynamic finger conjecture for splay trees. Part 2: Finger searching. Technical Report 472, Courant Institute, NYU, 1989.

    Google Scholar 

  25. R. Cole. On the dynamic finger conjecture for splay trees. In Proc. Symp. on Theory of Computing (STOC), pages 8–17, 1990.

    Google Scholar 

  26. R. Cole, B. Mishra, J. Schmidt, and A. Siegel. On the dynamic finger conjecture for splay trees. Part 1: Splay sorting log n-block sequences. Technical Report 471, Courant Institute, NYU, 1989.

    Google Scholar 

  27. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. McGraw-Hill, New York, NY, 1990.

    Google Scholar 

  28. C.A. Crane. Linear lists and priority queues as balanced binary trees. Technical Report STAN-CS-72-259, Dept. of Computer Science, Stanford University, 1972.

    Google Scholar 

  29. R. El-Yaniv. There are infinitely many competitive-optimal online list accessing algorithms. Manuscript, May 1996.

    Google Scholar 

  30. P. Elias. Universal codeword sets and the representation of the integers. IEEE Transactions on Information Theory, 21:194–203, 1975.

    Google Scholar 

  31. M.J. Golin. Phd thesis. Technical Report CS-TR-266-90, Department of Computer Science, Princeton University, 1990.

    Google Scholar 

  32. G.H. Gonnet, J.I. Munro, and H. Suwanda. Towards self-organizing linear search. In Proc. 19th Annual IEEE Symposium on Foundations of Computer Science, pages 169–174, 1979.

    Google Scholar 

  33. D. Grinberg, S. Rajagopalan, R. Venkatesan, and V.K. Wei. Splay trees for data compression. In Proc. of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 522–530, 1995.

    Google Scholar 

  34. G.H. Hardy, J.E. Littlewood, and G. Polya. Inequalities. Cambridge University Press, Cambridge, England, 1967.

    Google Scholar 

  35. W.J. Hendricks. An extension of a theorem concerning an intersting Markov chain. Journal on Applied Probability, 10:886–890, 1973.

    Google Scholar 

  36. J.H. Hester and D.S. Hirschberg. Self-organizing linear search. ACM Computing Surveys, 17:295–312, 1985.

    Google Scholar 

  37. S. Irani. Two results on the list update problem. Information Processing Letters, 38:301–306, 1991.

    Google Scholar 

  38. S. Irani. Corrected version of the SPLIT algorithm. Manscript, January 1996.

    Google Scholar 

  39. D.W. Jones. Application of splay trees to data compression. Communications of the ACM, 31(8):996–1007, August 1988.

    Article  Google Scholar 

  40. G. Schay Jr. and F. W. Dauer. A probabilistic model of a self-organizing file system. SIAM Journal on Applied Mathematics, 15:874–888, 1967.

    Google Scholar 

  41. Y.C. Kan and S.M. Ross. Optimal list orders under partial memory constraints. Journal on Applied Probability, 17:1004–1015, 1980.

    Google Scholar 

  42. R. Karp and P. Raghavan. From a personal communication cited in [61].

    Google Scholar 

  43. W.F. Klostermeyer. Optimizing searching with self-adjusting trees. Journal of Information & Optimization Sciences, 13(1):85–95, January 1992.

    Google Scholar 

  44. D.E. Knuth. Optimum binary search trees. Acta Informatica, pages 14–25, 1971.

    Google Scholar 

  45. D.E. Knuth. The Art of Computer Programming, Sorting and Searching, volume 3. Addison-Wesley, Reading, MA, 1973.

    Google Scholar 

  46. K. Kulik II and D. Wood. A note on some tree similarity measures. Information Processing Letters, 15:39–42, 1982.

    Google Scholar 

  47. K. Lam, M.K. Sui, and C.T. Yu. A generalized counter scheme. Theoretical Computer Science, 16:271–278, 1981.

    Article  Google Scholar 

  48. J.M. Lucas. The rotation graph of binary trees is Hamiltonian. Journal of Algorithms, 8(4):503–535, December 1987.

    Article  Google Scholar 

  49. J.M. Lucas. Arbitrary splitting in splay trees. Technical Report DCS-TR-234, Rutgers University, 1988.

    Google Scholar 

  50. J.M. Lucas. Canonical forms for competitive binary search tree algorithms. Technical Report DCS-TR-250, Rutgers University, 1988.

    Google Scholar 

  51. F. Luccio and L. Pagli. On the upper bound on the rotation distance of binary trees. Information Processing Letters, 31(2):57–60, April 1989.

    Article  Google Scholar 

  52. E. Makinen. On the rotation distance of binary trees. Information Processing Letters, 26(5):271–272, January 1988.

    Article  Google Scholar 

  53. M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Competitive algorithms for online problems. In Proc. 20th Annual ACM Symposium on Theory of Computing, pages 322–33, 1988.

    Google Scholar 

  54. C. Martel. Self-adjusting multi-way search trees. Information Processing Letters, 38(3):135–141, May 1991.

    Google Scholar 

  55. J. McCabe. On serial files with relocatable records. Operations Research, 12:609–618, 1965.

    Google Scholar 

  56. K. Mehlhorn. Nearly optimal binary search trees. Acta Informatica, 5:287–295, 1975.

    Google Scholar 

  57. K. Mehlhorn. Dynamic binary search. SIAM Journal on Computing, 8(2):175–198, 1979.

    Article  Google Scholar 

  58. K. Mehlhorn. Data Structures and Algorithms. Springer-Verlag, New York, 1984. (3 volumes).

    Google Scholar 

  59. G. Port and A. Moffat. A fast algorithm for melding splay trees. In Proceedings Workshop on Algorithms and Data Structures (WADS '89), pages 450–459, Berlin, West Germany, 1989. Springer-Verlag.

    Google Scholar 

  60. N. Reingold and J. Westbrook. Optimum off-line algorithms for the list update problem. Technical Report YALEU/DCS/TR-805, Yale University, 1990.

    Google Scholar 

  61. N. Reingold, J. Westbrook, and D.D. Sleator. Randomized competitive algorithms for the list update problem. Algorithmica, 11:15–32, 1994.

    Article  MathSciNet  Google Scholar 

  62. R. Rivest. On self-organizing sequential search heuristics. Communication of the ACM, 19:63–67, 1976.

    Article  Google Scholar 

  63. M. Sherk. Self-adjusting k-ary search trees. Journal of Algorithms, 19(1):25–44, July 1995.

    Article  Google Scholar 

  64. D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules. Communication of the ACM, 28:202–208, 1985.

    Article  Google Scholar 

  65. D.D. Sleator and R.E. Tarjan. Self-adjusting binary search trees. Journal of the ACM, 32:652–686, 1985.

    Article  Google Scholar 

  66. D.D. Sleator, R.E. Tarjan, and W.P. Thurston. Rotation distance, triangulations, and hyperbolic geometry. In Proc. 18th Symp. on Theory of Computing (STOC), pages 122–135, 1986.

    Google Scholar 

  67. R. Sundar. Twists, turns, cascades, deque conjecture, and scanning theorem. In Proc. 30th Symp. on Foundations of Computer Science (FOCS), pages 555–559, 1989.

    Google Scholar 

  68. R. Sundar. Twists, turns, cascades, deque conjecture, and scanning theorem. Technical Report 427, Courant Institute, New York University, January 1989.

    Google Scholar 

  69. R.E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA., 1983.

    Google Scholar 

  70. R.E. Tarjan. Amortized computational complexity. SIAM Journal on Algebraic and Discrete Methods, 6:306–318, 1985.

    Google Scholar 

  71. R.E. Tarjan. Sequential access in splay trees takes linear time. Combinatorica, 5(4):367–378, 1985.

    Google Scholar 

  72. B. Teia. A lower bound for randomized list update algorithms. Information Processing Letters, 47:5–9, 1993.

    Article  Google Scholar 

  73. A. Tenenbaum. Simulations of dynamic sequential search algorithms. Communication of the ACM, 21:790–79, 1978.

    Article  Google Scholar 

  74. A.M. Tenenbaum and R.M. Nemes. Two spectra of self-organizing sequential search. SIAM Journal on Computing, 11:557–566, 1982.

    Article  Google Scholar 

  75. J.S. Vitter. Two papers on dynamic Huffman codes. Technical Report CS-85-13, Brown University Computer Science, Providence. R.I., Revised December 1986.

    Google Scholar 

  76. R. Wilber. Lower bounds for accessing binary search trees with rotations. SIAM Journal on Computing, 18(1):56–67, February 1989.

    Article  Google Scholar 

  77. I.H. Witten and T. Bell. The Calgary/Canterbury text compression corpus. Anonymous ftp from ftp.cpsc.ucalgary.ca /pub/text.compression/corpus/ text.compression.corpus.tar.Z.

    Google Scholar 

Download references

Authors

Editor information

Amos Fiat Gerhard J. Woeginger

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Albers, S., Westbrook, J. (1998). Self-organizing data structures. In: Fiat, A., Woeginger, G.J. (eds) Online Algorithms. Lecture Notes in Computer Science, vol 1442. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0029563

Download citation

  • DOI: https://doi.org/10.1007/BFb0029563

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64917-5

  • Online ISBN: 978-3-540-68311-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics