[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Linear comparison complexity of the n-cube membership problem

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 1985)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 199))

Included in the following conference series:

  • 107 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Györi, An n-dimensional search problem with restricted questions. Combinatorica 1(4) (1981) 377–380.

    Google Scholar 

  2. J. Morávek, On the complexity of discrete programming problems. (talk) 6th International Symposium on Math. Programming, Princeton University 1967.

    Google Scholar 

  3. J. Morávek, Über die algorithmische Komplexität des Problems der diskreten Optimierung. 12. Int. Kolloquium, TH Ilmenau, DDR, 1967.

    Google Scholar 

  4. J. Morávek, On the complexity of disrete programming problems. Aplikace matematiky 14, 1969, 442–474.

    Google Scholar 

  5. J. Morávek, A localization problem in geometry and complexity of discrete programming. Kybernetika (Prague) 8: 498–516 (1972).

    Google Scholar 

  6. J. Morávek, A geometrical method in combinatorial complexity. Aplikace matematiky 26: 82–96 (1981).

    Google Scholar 

  7. J. Morávek, Decision trees and lower bound for complexity of linear programming, in Graphs and Other Combinatorial Topics. M. Fiedler, Ed., Proc. of the Third Czechoslovak Symposium on Graph Theory, held in Prague, 1982.

    Google Scholar 

  8. J. Morávek, P. Pudlák, New lower bound for polyhedral membership problem with an application to linear programming. Lecture Notes in Computer Science, Vol. 176, Proceedings of MFCS 1984, pp. 416–424, Springer-Verlag 1984.

    Google Scholar 

  9. J.W. Jaromczyk, Linear decision trees are too weak for convex hull problem. Infor. Process. Lett. 12 (1981), No.3, 138–141.

    Google Scholar 

  10. H. Machida, A lower bound on the complexity of knapsack problem. Proceedings of the Seventh I.B.M. Symposium on Mathematical Foundation of Computer Science (1982), 1–23.

    Google Scholar 

  11. H. Nakayama, T. Nishizeki and N. Saito, Lower bounds for some graph-problems. Journal of Algorithms, to appear.

    Google Scholar 

  12. I. Pohl, A sorting problem and its complexity, Comm of the ACM 15(1972), 462–464.

    Google Scholar 

  13. S.S. Kislicyn, O vydělenii k-go elementa uporjadočennoj sovokupnosti putěm poparnych sravněnij. Sibirskij mat. žurnal (Siberian Math. Journal), 5, 1964, 557–564.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lothar Budach

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Křivánek, M., Morávek, J. (1985). Linear comparison complexity of the n-cube membership problem. In: Budach, L. (eds) Fundamentals of Computation Theory. FCT 1985. Lecture Notes in Computer Science, vol 199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0028808

Download citation

  • DOI: https://doi.org/10.1007/BFb0028808

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15689-5

  • Online ISBN: 978-3-540-39636-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics