Abstract
We introduce a general framework for the definition of function classes. Our model, which is based on polynomial time nondeterministic Turing transducers, allows uniform characterizations of FP, FPNP, counting classes (#·P, #·NP, #·coNP, GapP, GapPNP), optimization classes (max·P, min·P, max·NP, min·NP), promise classes (NPSV, #few·P, c#·P), multivalued classes (FewFP, NPMV) and many more. Each such class is defined in our model by a certain family of functions. We study a reducibility notion between such families, which leads to a necessary and sufficient criterion for relativizable inclusion between function classes. As it turns out, this criterion is easily applicable and we get as a consequence e.g. that there are oracles A, B, such that min.PA \(\nsubseteq\) #·NPA, and max.NPB \(\nsubseteq\) c#·coNPB (note that no structural consequences are known to follow from the corresponding positive inclusions).
Supported by the Deutsche Forschungsgemeinschaft (DFG), grant Wa 847/1-2.
Preview
Unable to display preview. Download preview PDF.
References
J. L. Balcázar, J. Diaz, and J. Gabarró. Structural Complexity I. Texts in Theoretical Computer Science. Springer-Verlag, Berlin Heidelberg, 2nd edition, 1995.
R. V. Book, T. Long, and A. Selman. Quantitative relativizations of complexity classes. SIAM Journal on Computing, 13:461–487, 1984.
B. Borchert. Predicate classes, promise classes, and the acceptance power of regular languages. PhD thesis, Naturwissenschaftlich-Mathematische Fakultät, Universität Heidelberg, 1994.
D. P. Bovet and P. Crescenzi. Introduction to the Theory of Complexity. International Series in Computer Science. Prentice Hall, London, 1994.
D. P. Bovet, P. Crescenzi, and R. Silvestri. A uniform approach to define complexity classes. Theoretical Computer Science, 104:263–283, 1992.
S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. Journal of Computer and System Sciences, 48:116–148, 1994.
C. Glaßer and G. Wechsung. Relativizing function classes. Manuscript, 1997.
L. Hemaspaandra and H. Vollmer. The satanic notations: counting classes beyond #P and other definitional adventures. Complexity Theory Column 8, ACM SIGACT-Newsletter, 26(1):2–13, 1995.
H. Hempel and G. Wechsung. The operators min and max on the polynomial hierarchy. In Proceedings 14th Symposium on Theoretical Aspects of Computer Science, volume 1200 of Lecture Notes in Computer Science, pages 93–104. Springer-Verlag, 1997.
U. Hertrampf. Classes of bounded counting type and their inclusion relations. In Proceedings 12th Symposium on Theoretical Aspects of Computer Science, volume 900 of Lecture Notes in Computer Science, pages 60–70. Springer-Verlag, 1995.
U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. W. Wagner. On the power of polynomial time bit-reductions. In Proceedings 8th Structure in Complexity Theory, pages 200–207, 1993.
U. Hertrampf, H. Vollmer, and K. W. Wagner. On the power of number-theoretic operations with respect to counting. In Proceedings 10th Structure in Complexity Theory, pages 299–314, 1995.
B. Jenner, P. McKenzie, and D. Th6rien. Logspate and logtime leaf languages. In 9th Annual Conference Structure in Complexity Theory, pages 242–254, 1994.
B. Jenner and J. Torán. Computing functions with parallel queries to NP. Theoretical Computer Science, 141:175–193, 1995.
J. Köbler. Strukturelle Komplexitdt von Anzahlproblemen. PhD thesis, Universität Stuttgart, Fakultät für Informatik, 1989.
J. Köbler, U. Schöning, and J. Torán. On counting and approximation. Acta Informatica, 26:363–379, 1989.
S. Kosub. On cluster machines and function classes. Technical Report 172, Institut für Informatik, Universität Würzburg, 1997.
M. W. Krentel. The complexity of optimization functions. Journal of Computer and System Sciences, 36:490–509, 1988.
M. W. Krentel. Generalizations of OptP to the polynomial hierarchy. Theoretical Computer Science, 97:183–198, 1992.
C. H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, MA, 1994.
H. Schmitz. Nichtdeterministische Polynomialzeit-Berechnung von Funktionen. Master's thesis, Institut für Informatik, Universität Würzburg, 1996.
A. Selman. A taxonomy on complexity classes of functions. Journal of Computer and System Sciences, 48:357–381, 1994.
S. Toda. PP is as hard as the polynomial time hierarchy. SIAM Journal on Computing, 20:865–877, 1991.
L. G. Valiant. The complexity of enumeration and reliabilty problems. SIAM Journal of Computing, 8(3):411–421, 1979.
N. K. Vereshchagin. Relativizable and non-relativizable theorems in the polynomial theory of algorithms. Izvestija Rossijskoj Akademii Nauk, 57:51–90, 1993. In Russian.
H. Vollmer. On different reducibility notions for function classes. In Proceedings 11th Symposium on Theoretical Aspects of Computer Science, volume 775 of Lecture Notes in Computer Science, pages 449–460. Springer-Verlag, 1994.
H. Vollmer and K. W. Wagner. The complexity of finding middle elements. International Journal of Foundations of Computer Science, 4:293–307, 1993.
H. Vollmer and K. W. Wagner. Complexity classes of optimization functions. Information and Computation, 120:198–219, 1995.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag
About this paper
Cite this paper
Kosub, S., Schmitz, H., Vollmer, H. (1998). Uniformly defining complexity classes of functions. In: Morvan, M., Meinel, C., Krob, D. (eds) STACS 98. STACS 1998. Lecture Notes in Computer Science, vol 1373. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0028595
Download citation
DOI: https://doi.org/10.1007/BFb0028595
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64230-5
Online ISBN: 978-3-540-69705-3
eBook Packages: Springer Book Archive