Abstract
The paper deals with the question how a cumulative inference operator can be generated by default deduction rules. After discussing the “classical” ways (i.e. the sceptical and the credulous definition as well as Brewka's approach) we propose a new approach, the socalled codiagonal generation of cumulative inference operator by default deduction rules.
This approach gives the possibility to generalize the abstract theory of monotonic inference operators (due to Tarski, Birkhoff, Hall and Schmidt) to the case considered. In particular, it allows to formulate simple conditions on the given system of default deduction rules so that the generated inference operator is cumulative.
Some other methods to generate inference operators by default deduction rules, similiar to the “generating philosophy” used, are described in the last section.
Preview
Unable to display preview. Download preview PDF.
References
[Birkhoff 33] Birkhoff, G.: On the combination of subalgebras. Proc. Cambridge Phil. Soc. 23 (1933), 441–464.
[Birkhoff 35] Birkhoff, G.: On the structure of abstract algebras. Proc. Cambridge Phil. Soc. 31 (1935), 433–454.
[Birkhoff 46] Birkhoff, G.: Universal algebra. Proc. Canad. Math. Cong. (Montreal, 1946), 310–326.
[Birkhoff 48] Birkhoff, G.: Lattice Theory. (American Mathematical Society Colloquium Publications, vol. 25). Rev. ed., New York 1948.
[Brewka 86] Brewka, G.: Tweety-Still Flying: Some Remarks on Abnormal Birds Applicable Rules and a Default Prover. Proc. AAAI-86, 1986.
[Brewka 90] Brewka, G.: Cumulative Default Logic: In Defense of Nonmonotonic Inference Rules. Arbeitspapiere der GMD 443 (May 1990), 153–178.
[Cohn 65] Cohn, P.M.: Universal algebra. Harper and Row (New York, Evanston and London) and John Weatherhill, Inc. (Tokyo), 1965, 333 pages.
[Davis 80] Davis, M.: The mathematics of non-monotonic reasoning. Artificial Intelligence 13(1980), 73–80.
[Dix 89a] Dix, J.: Some Tendencies in Non-monotonic Reasoning. I. The Main Approaches. 7th Easter Conference on Model Theory. Seminarbericht 104 (1989), 81–105. Sektion Mathematik, Humboldt-Universität zu Berlin.
[Dix 89b] Dix, J.: Some Tendencies in Non-monotonic Reasoning. II. The Relations to Logic Programming. In preparation.
[Freund 90] Freund, M.: Supracompact inference operators. To appear.
[Gabbay 85] Gabbay, D.M.: Theoretical foundations for non-monotonic reasoning in expert systems. Logics and Models of Concurrent Systems. Edited by Apt. NATO ASI Series. Series F: Computer and System Sciences 13 (1985), 439–457. Springer-Verlag, Heidelberg.
[Ginsberg 87] Ginsberg, M.L. (Editor): Readings in Nonmonotonic Reasoning. Morgan Kaufmann Publishers, Inc., Los Altos, California, 1987, 481 pages.
[Herre 91] Herre, H.: Constructivity and completeness in Logic Programming. To appear.
[Kraus/Lehmann/Magidor 89] Kraus, S., D. Lehmann, and M. Magidor: Preferential models and cumulative logics. To appear in Artificial Intelligence.
[Lehmann/Magidor 88] Lehmann, D. and M. Magidor: Rational logics and their models: a study in cumulative logics. Department of Computer Sciences, Hebrew University, TR-88-16.
[Makinson 89] Makinson, D.: General theory of cumulative inference. Non-Monotonic Reasoning. Proc. 2nd International Workshop, June 1988. Lecture Notes in Artificial Intelligence 346 (1989), 1–18.
[Reiter 78] Reiter, R.: On reasoning by default. Proceedings Second Symp. on Theoretical Issues in Natural Language Processing, Urbana, Ill. (1978).
[Reiter 80] Reiter, R.: A logic for default reasoning. Artificial Intelligence 13 (1980), 81–132.
[Reiter 87] Reiter, R.: Nonmonotonic reasoning. Annual Reviews of Computer Science (1987), 147–186.
[Schmidt 52] Schmidt, J.: Über die Rolle der transfiniten Schlussweisen in einer allgemeinen Algebra. Mathematische Nachrichten 7 (1952), 165–182.
[Tarski 30a] Tarski, A.: Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften. Monatshefte Math. Phys. 37 (1930), 360–404.
[Tarski 30b] Tarski, A.: Über einige fundamentale Begriffe der Metamathematik, C.r. Soc. Sci. Varsovie 23 (1930), 22–29.
[Tarski 30c] Tarski, A.: Remarques sur les notions fondamentales de la méthodologie des mathématiques. Ann. Soc. Polon. Math. 7 (1930), 270–272.
[Thiele 89] Thiele, H.: On closed sets and extensions of default reasoning systems. ASL Logic Colloquium 1989. Paper on the 1989 European Summer Meeting of the ASL, July 25–August 3, 1989. TU and FU Berlin. Conference Abstracts.
[Thiele 90a] Thiele, H.: On cumulatiave inference operators. 8th Easter Conference on Model Theory. Seminarbericht 110 (1990), 145–147.
[Thiele 90b] Thiele, H.: Regulated Algebras — A Class of New Algebraic Structures for Characterizing Default Reasoning. Arbeitspapiere der GMD 443 (May 1990), 85–131.
[Thiele 90c] Thiele, H.: On inference operators generated by default deduction rules. Paper in the First All-Berlin Workshop on Nonclassical Logic and Information Processing. FU Berlin, November 9–10, 1990. To be published in the Conference Proceedings.
[Thiele 90d] Thiele, H.: Default Algebras — A new class of universal algebraic structures. Paper on the Mathematics-Conference. FU Berlin, December 12–14, 1990. To appear.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1991 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Thiele, H. (1991). On generation of cumulative inference operators by default deduction rules. In: Dix, J., Jantke, K.P., Schmitt, P.H. (eds) Nonmonotonic and Inductive Logic. NIL 1990. Lecture Notes in Computer Science, vol 543. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0023320
Download citation
DOI: https://doi.org/10.1007/BFb0023320
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-54564-4
Online ISBN: 978-3-540-38469-4
eBook Packages: Springer Book Archive