[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Parallelization of large scale ocean models by data decomposition

  • Conference paper
  • First Online:
High-Performance Computing and Networking (HPCN-Europe 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 796))

Included in the following conference series:

Abstract

There exist two widely used types of models for the investigation of flows in the world oceans: quasi-geostrophic (QG) models and models based on the primitive equations of motion (PE-models). Starting from existing sequential programs we investigate different strategies for their parallelization. Implementation strategies for the QG-model on a multiprocessor with shared memory and a few nodes are discussed. For the PE-model we describe an implementation on a distributed memory machine with special emphasis on the load balancing issue and communication costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bryan, K.: A Numerical Method for the Study of the Circulation of the World Ocean. J. Comp. Phys. 4 (1969) 347–376

    Google Scholar 

  2. Hiller, W., Behrens, J.: Parallelisierung von Mehrgitteralgorithmen auf der Alliant FX/80 in H. W. Meuer, Ed., Parallelisierung komplexer Probleme, Springer Verlag, Berlin, (1991) 37–82

    Google Scholar 

  3. Holland, W. R.: The role of mesoscale eddies in the general circulation of the ocean-Numerical experiments using a wind-driven quasi-geostrophic model. J. Phys. Oceanography 8 (1978) 363–392

    Google Scholar 

  4. Pacanowski, R., Dixon, K., Rosati, A.: The G.F.D.L. Modular Ocean Model Users Guide, GFDL Ocean Group Technical Report #2, (1991,1993)

    Google Scholar 

  5. Procassini, R. J., Whitman, S. R., Dannevik, W. P.: Porting a Global Ocean Model onto a Shared-Memory Multiprocessor: Observations and Guidelines. The J. of Supercomuting 7 (1993) 287–321

    Google Scholar 

  6. Singh, J. P., Hennessy, J. L.: Finding and Exploiting Parallelism in an Ocean Simulation Program: Experience, Results, and Implications. J. Par. Dist. Comp. 15 (1992) 27–48

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang Gentzsch Uwe Harms

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kersken, H.P., Fritzsch, B., Schenk, O., Hiller, W., Behrens, J., Krauße, E. (1994). Parallelization of large scale ocean models by data decomposition. In: Gentzsch, W., Harms, U. (eds) High-Performance Computing and Networking. HPCN-Europe 1994. Lecture Notes in Computer Science, vol 796. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020393

Download citation

  • DOI: https://doi.org/10.1007/BFb0020393

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57980-9

  • Online ISBN: 978-3-540-48406-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics