[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Tabu search for maximal constraint satisfaction problems

  • Session 4
  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming-CP97 (CP 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1330))

  • 155 Accesses

Abstract

This paper presents a Tabu Search (TS) algorithm for solving maximal constraint satisfaction problems. The algorithm was tested on a wide range of random instances (up to 500 variables and 30 values). Comparisons were carried out with a min-conflicts+random-walk (MCRW) algorithm. Empirical evidence shows that the TS algorithm finds results which are better than that of the MCRW algorithm.the TS algorithm is 3 to 5 times faster than the MCRW algorithm to find solutions of the same quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Cheeseman, B. Kanefsky and W.M. Taylor, “Where the really hard problems are”, Proc. of the 12th IJCAP90, ppl63–169, 1991.

    Google Scholar 

  2. D.A. Clark, J. Frank, I.P. Gent, E. MacIntyre, N. Tomov, T. Walsh, “Local search and the number of solutions”, Proc. of CP97, pp119–133, 1996.

    Google Scholar 

  3. C. Fleurent and J.A. Ferland, “Genetic and hybrid algorithms for graph coloring”, to appear in G. Laporte, I. H. Osman, and P. L. Hammer (Eds.), Special Issue Annals of Operations Research, “Metaheuristics in Combinatorial Optimization”.

    Google Scholar 

  4. E.C. Freuder and R.J. Wallace, “Partial constraint satisfaction”, Artificial Intelligence, Vol.58(1–3) pp21–70, 1992.

    Google Scholar 

  5. F. Glover and M. Laguna, “Tabu Search”, in C. R. Reeves (Ed.), Modern heuristics for combinatorial problems, Blackwell Scientific Publishing, Oxford, GB, 1993.

    Google Scholar 

  6. J.K. Hao and R. Dorne, “Empirical studies of heuristic local search for constraint solving”, Proc. of CP-96, LNCS 1118, pp194–208, Cambridge, MA, USA, 1996.

    Google Scholar 

  7. P. Hensen and B. Jaumard, “Algorithms for the maximum satisfiability problem”, Computing Vol.44, pp279–303, 1990.

    Google Scholar 

  8. A. Hertz and D. de Werra, “Using Tabu search techniques for graph coloring”. Computing Vol.39, pp345–351, 1987.

    Google Scholar 

  9. T. Hogg, B.A. Huberman and C.P. Williams, Artificial Intelligence, Special Issue on the Phase Transition and Complexity. Vol 82, 1996.

    Google Scholar 

  10. D.S. Johnson, C.H. Papadimitriou and M. Yannakakis, “How easy is local search?” Journal of Computer and System Sciences, Vol.37(1), pp79–100, Aug. 1988.

    Google Scholar 

  11. S. Kirkpatrick, C.D. Gelatt Jr. and M.P. Vecchi, “Optimization by simulated annealing”, Science No.220, pp671–680, 1983.

    Google Scholar 

  12. J. Larrosa and P. Meseguer, “Optimization-based heuristics for maximal constraint satisfaction”, Proc. of CP-95, pp190–194, Cassis, France, 1995.

    Google Scholar 

  13. A.K. Mackworth, “Constraint satisfaction”, in S.C. Shapiro (Ed.) Encyclopedia on Artificial Intelligence, John Wiley & Sons, NY, 1987.

    Google Scholar 

  14. S. Minton, M.D. Johnston and P. Laird, “Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling problems”, Artificial Intelligence, Vol.58(1–3), pp161–206, 1992.

    Google Scholar 

  15. P. Morris, “The Breakout method for escaping from local minima”, Proc. of AAAI-93, pp40–45, 1993.

    Google Scholar 

  16. C.H. Papadimitriou and K. Steiglitz, “Combinatorial optimization — algorithms and complexity”, Prentice Hall, 1982.

    Google Scholar 

  17. B. Selman and H.Kautz, “Domain-independent extensions to GSAT: solving large structured satisfiability problems”, Proc. of IJCAI-93, Chambery, France, 1993.

    Google Scholar 

  18. B.M. Smith, “Phase transition and the mushy region in constraint satisfaction problems”, Proc. of ECAI94, pp100–104, 1994.

    Google Scholar 

  19. E. Tsang, “Foundations of constraint satisfaction”, Academic Press, 1993.

    Google Scholar 

  20. R.J. Wallace, “Enhancements of branch and bound methods for the maximal constraint satisfaction problem”, Proc. of AAAI-96, ppl88–196, Portland, Oregon, USA, 1996.

    Google Scholar 

  21. R.J. Wallace, “Analysis of heuristics methods for partial constraint satisfaction problems”, Proc. of CP-96, LNCS 1118, pp308–322, Cambridge, MA, USA, 1996.

    Google Scholar 

  22. N. Yugami, Y. Ohta and H. Hara, “Improving repair-based constraint satisfaction methods by value propagation”, Proc. of AAAI-94, pp344–349, Seattle, WA, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gert Smolka

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Galinier, P., Hao, JK. (1997). Tabu search for maximal constraint satisfaction problems. In: Smolka, G. (eds) Principles and Practice of Constraint Programming-CP97. CP 1997. Lecture Notes in Computer Science, vol 1330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0017440

Download citation

  • DOI: https://doi.org/10.1007/BFb0017440

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63753-0

  • Online ISBN: 978-3-540-69642-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics