Abstract
This article presents a new algorithm for segmenting 3D images. It is based on a dynamic triangulated surface and on a pyramidal representation. The triangulated surface, which can as well modify its geometry as its topology, segments images into their components by altering its shape according to internal and external constraints. In order to speed up the whole process, the surface performs a coarse-to-fine approach by evolving in a specifically designed pyramid of 3D images.
Chapter PDF
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
P. J. Burt. ”Fast filter transforms for image processing”. Computer Graphics and Image Processing, 16:20–51, January 1981.
A. Chéhikian. ”Algorithmes optimaux pour la génération de pyramides passesbas et laplaciennes”. Traitement du Signal, 9:297–308, January 1992.
H.B. Griffiths. ”Surfaces”. Cambridge University Press, January 1976.
M. Kass, A. Witkin, and D. Terzopoulos. ”Snakes: active contour models”. In 1st Conference on Computer Vision, Londres, June 1987.
J.O. Lachaud and A. Montanvert. ”Volumic Segmentation using Hierarchical Representation and Triangulated Surface”. Research Report 95-37, LIP-ENS Lyon, France, November 1995.
J.O. Lachaud and A. Montanvert. ”Segmentation tridimensionnelle hiérarchique par triangulation de surface”. In 10ème Congrès Reconnaissance des Formes et Intelligence Artificielle, January 1996.
F. Leitner and P. Cinquin. ”Complex topology 3D objects segmentation”. In Advances in Intelligent Robotics Systems, volume 1609 of SPIE, Boston, November 1991.
W. E. Lorensen and H. E. Cline. ”Marching Cubes: A High Resolution 3D Surface Construction Algorithm”. Computer Graphics, 21:163–169, January 1987.
R. Malladi, J. A. Sethian, and B. C. Vemuri. ”Shape Modelling with Front Propagation: A Level Set Approach”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(2):158–174, February 1995.
J.V. Miller, D.E. Breen, W.E. Lorensen, R.M. O'Barnes, and M.J. Wozny. ”Geometrically deformed models: A method for extracting closed geometric models from volume data”. Computer Graphics, 25(4), July 1991.
R. Szeliski and D. Tonnesen. ”Surface Modeling with oriented Particle Systems”. Technical Report CRL-91-14, DEC Cambridge Research Lab., December 1991.
D. Terzopoulos and A. Witkin. ”Deformable Models: Physically based models with rigid and deformable components”. IEEE Computer Graphics and Applications, 8(6):41–51, November 1988.
P. Volino and Thalmann N. Magnenat. ”Efficient self-collision detection on smoothly discretized surface animations using geometrical shape regularity”. In Eurographics'94, volume 13(3), September 1994.
R.T. Whitaker. ”Volumetric deformable models: active blobs”. In VBC, volume 2359 of SPIE, pages 122–134, March 1994.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lachaud, JO., Montanvert, A. (1996). Volumic segmentation using hierarchical representation and triangulated surface. In: Buxton, B., Cipolla, R. (eds) Computer Vision — ECCV '96. ECCV 1996. Lecture Notes in Computer Science, vol 1064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0015530
Download citation
DOI: https://doi.org/10.1007/BFb0015530
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61122-6
Online ISBN: 978-3-540-49949-7
eBook Packages: Springer Book Archive