Abstract
A graph G=(V, E) with N nodes is called an N-hyper-ring if V={0,..., N−1} and E={(u, v) ¦ (u− v) modulo N is a power of 2}. We study embeddings of the 2n-hyper-ring in the n-dimensional hypercube. We show a greedy embedding with dilation 2 and congestion n+1 and a modified greedy embedding with dilation 4 and congestion 6.
Preview
Unable to display preview. Download preview PDF.
References
B. Aiello and F. T. Leighton, “Coding theory, hypercube embedding, and fault tolerance”, The 3rd Annual ACM Symp. on Parallel Algorithms and Architectures, pp. 125–136, 1991.
N. Alon, A. Barak and U. Mauber, “On disseminating information reliably without broadcasting”, The 7th International Conference on Distributed Computing Systems, pp. 74–81, 1987.
T. Altman, Y. Igarashi and K. Obokata, “Hyper-ring connection machines”, IEEE Region 10's 9th Annual International Conference, Vol. 1, pp. 290–294, 1994.
S. N. Bhatt and J-Y. Cai, “Take a walk, grow a tree”, The 29th Annual Symp. on Foundations of Computer Science, pp. 469–478, 1988.
S. N. Bhatt, F. R. K. Chung, J-W. Hong, F. T. Leighton and A. L. Rosenberg, “Optimal simulation by butterfly networks”, The 20th Annual ACM Symp. on Theory of Computing, pp. 192–204, 1988.
S. N. Bhatt, F. R. K. Chung, F. T. Leighton and A. L. Rosenberg, “Optimal tree machines”, The 27th Annual Symp. on Foundations of Computer Science, pp. 274–282, 1986.
S. N. Bhatt, F. R. K. Chung, F. T. Leighton and A. L. Rosenberg, “Efficient embeddings of trees in hypercubes”, SIAM J. Computing, Vol. 21, pp. 151–162, 1992.
M. Y. Chan, “Embedding of d-dimensional grids into optimal hypercubes”, The 1st Annual ACM Symp. on Parallel Algorithms and Architectures, pp. 52–57, 1989.
K. Efe, “Embedding mesh of trees in the hypercube”, J. Parallel and Distributed Computing, Vol. 11, pp. 222–230, 1991.
Y. Han and R. Finkel, “An optimal scheme for disseminating information”, Proceedings of 1988 International Conference on Parallel Processing, pp. 198–203, 1988.
Y. Han, Y. Igarashi, K. Kanai and K. Miura, “Fault-tolerance broadcasting in binary jumping networks”, The 3rd International Symp. on Algorithms and Computation, Lecture Notes in Computer Science, Vol. 650, pp. 145–154, 1992.
R. Koch, F. T. Leighton, B. Maggs, S. Rao and A. L. Rosenberg, “Work-preserving emulations of fixed-connected networks”, The 21st Annual ACM Symp. on Theory of Computing, pp. 227–240, 1989.
F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays. Trees. Hypercubes, Morgan Kaufman Publishers, San Mateo, 1992.
F. T. Leighton, M. Newman, A. G. Ranade and E. Schwabe, “Dynamic tree embeddings in butterflies and hypercubes”, The 1st Annual ACM Symp. on Algorithms and Architectures, pp. 224–234, 1989.
M. Röttger, U-P. Schroeder and W. Unger, “Embedding 3-dimensional grids into optimal hypercubes”, Technical Report, Dept. of Mathematics and Computer Science, Univ. of Paderborn, Paderborn, Germany, 1994.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hamada, Y., Mei, A., Nishitani, Y., Igarashi, Y. (1995). Embeddings of hyper-rings in hypercubes. In: Staples, J., Eades, P., Katoh, N., Moffat, A. (eds) Algorithms and Computations. ISAAC 1995. Lecture Notes in Computer Science, vol 1004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0015437
Download citation
DOI: https://doi.org/10.1007/BFb0015437
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-60573-7
Online ISBN: 978-3-540-47766-2
eBook Packages: Springer Book Archive