[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Computing the Tutte polynomial of a graph of moderate size

  • Session 7A
  • Conference paper
  • First Online:
Algorithms and Computations (ISAAC 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1004))

Included in the following conference series:

Abstract

The problem of computing the Tutte polynomial of a graph is #P-hard in general, and any known algorithm takes exponential time at least. This paper presents a new algorithm by exploiting a fact that many 2-isomorphic minors appear in the process of computation. The complexity of the algorithm is analyzed in terms of Bell numbers and Catalan numbers. This algorithm enables us to compute practically the Tutte polynomial of any graph with at most 14 vertices and 91 edges, and that of a planar graph such as 12×12 lattice graph with 144 vertices and 264 edges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. B. Akers: Binary Decision Diagrams. IEEE Trans. on Computers, Vol.C-27(1978), pp.509–516.

    Google Scholar 

  2. N. Alon, A. Frieze and D. J. A. Welsh: Polynomial Time Randomised Approximation Schemes for the Tutte Polynomial of Dense Graphs. Proceedings of the IEEE Annual Symposium on Foundations of Computer Science, 1994, pp.24–35.

    Google Scholar 

  3. R. E. Bryant: Graph Based Algorithms for Boolean Function Manipulation. IEEE Trans. on Computers, Vol.C-35(1986), pp.677–691.

    Google Scholar 

  4. D. R. Karger. A Randomized Fully Polynomial Time Approximation Scheme for the All Terminal Network Reliability Problem. Proceedings of the 27th Annual ACM Symposium on Theory of Computing, 1995, pp.11–17.

    Google Scholar 

  5. A. Shioura, A. Tamura and T. Uno: An Optimal Algorithm for Scanning All Spanning Trees of Undirected Graphs. SIAM Journal on Computing, to appear.

    Google Scholar 

  6. S. Tani: An Extended Framework of Ordered Binary Decision Diagrams for Combinatorial Graph Problems. Master's Thesis, Department of Information Science, University of Tokyo, 1995.

    Google Scholar 

  7. M. B. Thistlethwaite: A Spanning Tree Expansion of the Jones Polynomial. Topology, Vol.26 (1987), pp.297–309.

    Google Scholar 

  8. W. T. Tutte: A Contribution to the Theory of Chromatic Polynomials. Canadian Journal of Mathematics, Vol.6 (1954), pp.80–91.

    Google Scholar 

  9. D. J. A. Welsh: Complexity: Knots, Colourings and Counting. London Mathematical Society Lecture Note Series, Vol.186, Cambridge University Press, 1993.

    Google Scholar 

  10. H. S. Wilf: Algorithms and Complexity. Prentice-Hall, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

John Staples Peter Eades Naoki Katoh Alistair Moffat

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sekine, K., Imai, H., Tani, S. (1995). Computing the Tutte polynomial of a graph of moderate size. In: Staples, J., Eades, P., Katoh, N., Moffat, A. (eds) Algorithms and Computations. ISAAC 1995. Lecture Notes in Computer Science, vol 1004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0015427

Download citation

  • DOI: https://doi.org/10.1007/BFb0015427

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60573-7

  • Online ISBN: 978-3-540-47766-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics