[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Continuous voxel classification by stochastic relaxation: Theory and application to MR imaging and MR angiography

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 687))

Abstract

In this paper we present a stochastic relaxation method based on Bayesian decision theory for voxel classification in medical images. The labels are continuous (as opposed to discrete) values representing the degree of belief that a voxel belongs to a certain object class.

In the Bayesian Decision approach, the solution to the labeling problem is constrained by specifying an a priori model for the underlying scene and by specifying the camera model. The model for the underlying scene reflects in this case a priori knowledge on anatomy and morphology. The camera model relates observed MR-image intensities to objects in the scene. Both models are described using the concept of Markov Random Fields (MRF). The optimal labeling, here defined to minimize the percentage of misclassified voxels, can then be approximated asymptotically by a stochastic sampling of the associated Gibbs posterior joint probability distribution.

The method is applied to brain tissue classification in MRI and blood vessel classification in MR angiograms.

Directors: A. Oosterlinck & A.L. Baert

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leclerc Y.G.: “Constructing simple stable descriptions for image partitioning.”, International journal of computer vision, 3(1): 73–102, 1989.

    Article  Google Scholar 

  2. Low K-C., Coggins J.M.: “Biomedical image segmentation using multiscale orientation fields.”, Proc. of the first conference on visualization in biomedical computing, Atlanta, Georgia, may 1990.

    Google Scholar 

  3. Evans A.C., Dai W., Collins L., Neelin P., Marrett S.: “Warping of a computerized 3-D atlas to match brain image volumes for quantitative neuroanatomical and functional analysis.”, SPIE vol. 1445 image processing, 1991.

    Google Scholar 

  4. Marrett S., Evans A.C., Collins L., Peters T.M.: “A volume of interest (VOI) atlas for the analysis of neurophysiological image data.”, SPIE vol. 1092 medical imaging III — image processing, 1989.

    Google Scholar 

  5. Gerig G., Martin J., Kikinis R., Kubler O., Shenton M., Jolesz F.A.: “Unsupervised tissue type segmentation of 3D dual-echo MR head data.”, Image and vision computing, 10(6): 349–360, 1992.

    Article  Google Scholar 

  6. Drebin R., Carpenter R., Hanrahan P.: “Volume rendering.”, Computer Graphics, 22(4): 65–74, 1988.

    Google Scholar 

  7. Levoy M.: “Display of surfaces from volume data.”, IEEE Transactions on Computer Graphics and Applications, 8(3): 29–37, 1988.

    Article  Google Scholar 

  8. Besag J.: “On the statistical analysis of dirty pictures.”, J. R. Statist. Soc. B., 48(3):259–302, 1986.

    Google Scholar 

  9. Kindermann R., Snell J.: “Markov random fields and their applications.”, American Methematical Society, Providence, RI, 1980.

    Google Scholar 

  10. Besag J.: “Spatial interaction and the spatial analysis of lattice systems.”, Journal of the R. Statist. Soc. B., vol. 36, 1974.

    Google Scholar 

  11. Metropolis N., Rosenbluth M. et al.: “Equation of state calculations by fast computing machines.”, Journal of chemical physics, 21: 1087–1092, 1953

    Article  Google Scholar 

  12. Geman S., Geman D.: “Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images.”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6): 721–741, 1984.

    Google Scholar 

  13. Marroquin J., Mitter S., Poggio T.: “Probabilistic solution of ill-posed problems in computational vision.”, J. Am. Statist. Ass., 82(397): 76–89, 1987.

    Google Scholar 

  14. Tanner M., Wong W.H.: ”Calculation of posterior distributions by data augmentation”, Journal of the American Statistical Society, 82: 528–540, 1987.

    Google Scholar 

  15. Lin W.-J.: Boundary Estimation in Ultrasound Images”, Phd thesis, University of North Carolina at Chapel Hill, august 1991. Also available as Technical Report TR91-037.

    Google Scholar 

  16. Gerig G., Kübler O., Kikinis R., Jolesz F.A.: “Nonlinear anisotropic filtering of MRI data.”, IEEE transactions on medical imaging, 11(2): 221–232, 1992.

    Article  Google Scholar 

  17. Geiger D., Yuille A.: “A common framework for image segmentation.”, Int. Journal of Computer Vision, 6(3): 227–243, 1991.

    Article  Google Scholar 

  18. Snyder W., Logenthiran A., Santago P., Link K., Bilbro G., Rajala S.: “Segmentation of magnetic resonance images using mean field annealing.”, Image and vision computing, 10(6): 361–368, 1992.

    Article  Google Scholar 

  19. Chalmond B.: “An iterative Gibbsian technique for reconstruction of m-ary images.”, Pattern Recognition, 22(6): 747–761, 1989.

    Article  Google Scholar 

  20. Derin H., Elliot H.: “Modeling and segmentation of noisy and textured images using Gibbs Random Fields.”, IEEE transactions on Pattern Analysis and Machine Intelligence, 9(1): 39–55, 1987.

    Google Scholar 

  21. Lakshmanan S., Derin H.: “Simultaneous parameter estimation and segmentation of Gibbs Random Fields using Simulated Annealing.”, IEEE transactions on Pattern Analysis and Machine Intelligence, 11(8): 799–813, 1989.

    Article  Google Scholar 

  22. Verbeeck R., Vandermeulen D., Berben L., Suetens P., Marchal G., “Magnetic Resonance Voxel Labeling based on Bayesian Decision Theory.”, accepted for publication in SPIE vol. 1898 Image Processing, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Harrison H. Barrett A. F. Gmitro

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vandermeulen, D., Verbeeck, R., Berben, L., Suetens, P., Marchal, G. (1993). Continuous voxel classification by stochastic relaxation: Theory and application to MR imaging and MR angiography. In: Barrett, H.H., Gmitro, A.F. (eds) Information Processing in Medical Imaging. IPMI 1993. Lecture Notes in Computer Science, vol 687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0013807

Download citation

  • DOI: https://doi.org/10.1007/BFb0013807

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56800-1

  • Online ISBN: 978-3-540-47742-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics