[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Improving the multiprecision Euclidean algorithm

  • Conference paper
  • First Online:
Design and Implementation of Symbolic Computation Systems (DISCO 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 722))

Abstract

We improve the implementation of Lehmer-Euclid algorithm for multiprecision integer GCD computation by partial cosequence computation on pairs of double digits, enhanced condition for exiting the partial cosequence computation, and approximative GCD computation. The combined effect of these improvements is an experimentally measured speed-up by a factor of 2 over the currently used implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Buchberger. Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory. In Bose and Reidel, editors, Recent trends in Multidimensional Systems, pages 184–232, Dordrecht-Boston-Lancaster, 1985. D. Reidel Publishing Company.

    Google Scholar 

  2. B. Buchberger and T. Jebelean. Parallel rational arithmetic for Computer Algebra Systems: Motivating experiments. In 3rd Scientific Workshop of the Austrian Center for Parallel Computation, Weinberg, Austria, March 1992. Report ACPC/TR 93-3, February 1993.

    Google Scholar 

  3. G. E. Collins. Lecture notes on arithmetic algorithms, 1980. Univ. of Wisconsin.

    Google Scholar 

  4. M. Encarnacion. A Lehmer-type improvement of the modular residue to rational conversion. Technical report, RISC-Linz, 1993. To appear.

    Google Scholar 

  5. T. Granlund. GNU MP: The GNU multiple precision arithmetic library, 1991.

    Google Scholar 

  6. T. Jebelean. A Generalization of the Binary GCD Algorithm. In ISSAC'93: International Symposium on Symbolic and Algebraic Computation, Kiev, Ukraine, July 1993.

    Google Scholar 

  7. T. Jebelean. Comparing Several GCD Algorithms. In ARITH-11: IEEE Symposium on Computer Arithmetic, Windsor, Canada, June 1993.

    Google Scholar 

  8. D. E. Knuth. The art of computer programming, volume 2. Addison-Wesley, 2 edition, 1981.

    Google Scholar 

  9. D. H. Lehmer. Euclid's algorithm for large numbers. Am. Math. Mon., 45:227–233, 1938.

    Google Scholar 

  10. R. T. Moenck. Fast computation of GCDs. In ACM Vth Symp. Theory of Computing, pages 142–151. ACM, 1973.

    Google Scholar 

  11. W. Neun and H. Melenk. Very large Gröbner basis calculations. In Zippel, editor, Computer algebra and parallelism. Proceedings of the second International Workshop on Parallel Algebraic Computation, pages 89–100, Ithaca, May 1990. LNCS 584, Springer Verlag.

    Google Scholar 

  12. A. Schönhage. Schnelle Berechung von Kettenbruchentwicklugen. Acta Informatica, 1:139–144, 1971.

    Article  Google Scholar 

  13. J. Sorenson. Two fast GCD algorithms. Submitted to J. of Algorithms, 1993.

    Google Scholar 

  14. J. Stein. Computational problems associated with Racah algebra. J. Comp. Phys., 1:397–405, 1967.

    Article  Google Scholar 

  15. P. S. Wang, M. J. T. Guy, and J. H. Davenport. P-adic reconstruction of rational numbers. ACM SIGSAM Bulletin, 16(2):2–3, May 1982.

    Google Scholar 

  16. Ken Weber. The accelerated integer gcd algorithm. Technical report, Kent State University, 1993. To appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alfonso Miola

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jebelean, T. (1993). Improving the multiprecision Euclidean algorithm. In: Miola, A. (eds) Design and Implementation of Symbolic Computation Systems. DISCO 1993. Lecture Notes in Computer Science, vol 722. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0013167

Download citation

  • DOI: https://doi.org/10.1007/BFb0013167

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57235-0

  • Online ISBN: 978-3-540-47985-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics