Abstract
We improve the implementation of Lehmer-Euclid algorithm for multiprecision integer GCD computation by partial cosequence computation on pairs of double digits, enhanced condition for exiting the partial cosequence computation, and approximative GCD computation. The combined effect of these improvements is an experimentally measured speed-up by a factor of 2 over the currently used implementation.
Preview
Unable to display preview. Download preview PDF.
References
B. Buchberger. Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory. In Bose and Reidel, editors, Recent trends in Multidimensional Systems, pages 184–232, Dordrecht-Boston-Lancaster, 1985. D. Reidel Publishing Company.
B. Buchberger and T. Jebelean. Parallel rational arithmetic for Computer Algebra Systems: Motivating experiments. In 3rd Scientific Workshop of the Austrian Center for Parallel Computation, Weinberg, Austria, March 1992. Report ACPC/TR 93-3, February 1993.
G. E. Collins. Lecture notes on arithmetic algorithms, 1980. Univ. of Wisconsin.
M. Encarnacion. A Lehmer-type improvement of the modular residue to rational conversion. Technical report, RISC-Linz, 1993. To appear.
T. Granlund. GNU MP: The GNU multiple precision arithmetic library, 1991.
T. Jebelean. A Generalization of the Binary GCD Algorithm. In ISSAC'93: International Symposium on Symbolic and Algebraic Computation, Kiev, Ukraine, July 1993.
T. Jebelean. Comparing Several GCD Algorithms. In ARITH-11: IEEE Symposium on Computer Arithmetic, Windsor, Canada, June 1993.
D. E. Knuth. The art of computer programming, volume 2. Addison-Wesley, 2 edition, 1981.
D. H. Lehmer. Euclid's algorithm for large numbers. Am. Math. Mon., 45:227–233, 1938.
R. T. Moenck. Fast computation of GCDs. In ACM Vth Symp. Theory of Computing, pages 142–151. ACM, 1973.
W. Neun and H. Melenk. Very large Gröbner basis calculations. In Zippel, editor, Computer algebra and parallelism. Proceedings of the second International Workshop on Parallel Algebraic Computation, pages 89–100, Ithaca, May 1990. LNCS 584, Springer Verlag.
A. Schönhage. Schnelle Berechung von Kettenbruchentwicklugen. Acta Informatica, 1:139–144, 1971.
J. Sorenson. Two fast GCD algorithms. Submitted to J. of Algorithms, 1993.
J. Stein. Computational problems associated with Racah algebra. J. Comp. Phys., 1:397–405, 1967.
P. S. Wang, M. J. T. Guy, and J. H. Davenport. P-adic reconstruction of rational numbers. ACM SIGSAM Bulletin, 16(2):2–3, May 1982.
Ken Weber. The accelerated integer gcd algorithm. Technical report, Kent State University, 1993. To appear.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1993 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jebelean, T. (1993). Improving the multiprecision Euclidean algorithm. In: Miola, A. (eds) Design and Implementation of Symbolic Computation Systems. DISCO 1993. Lecture Notes in Computer Science, vol 722. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0013167
Download citation
DOI: https://doi.org/10.1007/BFb0013167
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-57235-0
Online ISBN: 978-3-540-47985-7
eBook Packages: Springer Book Archive