[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Partial unification for graph based equational reasoning

  • Conference paper
  • First Online:
9th International Conference on Automated Deduction (CADE 1988)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 310))

Included in the following conference series:

  • 170 Accesses

Abstract

The problems of mechanizing equational reasoning are discussed and two prominent approaches (E-resolution and RUE-resolution) that build equality into a resolution based calculus are evaluated. Their relative strengths and weaknesses are taken as a motivation for our own approach, whose evolution is described.

The essential idea in our equational reasoning method is to store the information about partially unified terms in a graphlike structure. This explicit representation supports a goaldirected planning approach at various levels of abstraction.

This work was supported by the Sonderforschungsbereich 314, (Artificial Intelligence) of the German Research Agency (DFG).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Anderson: Completeness results for E-resolution, Proc. Spring Joint Conf., 653–656, 1970

    Google Scholar 

  2. K.H. Bläsius, N. Eisinger, J. Siekmann, G. Smolka, A. Herold, C. Walther: The Markgraf Karl Refutation Procedure, Proc. IJCAI, 511–518, 1981

    Google Scholar 

  3. K.H. Bläsius: Equality Reasoning in Clause Graphs, Proc. IJCAI, 936–939, 1983

    Google Scholar 

  4. K.H. Bläsius: Against the ‘Anti Waltz Effect’ in Equality Reasoning, Proc. German Workshop on Artificial Intelligence, Informatik-Fachberichte 124, Springer, 230–241, 1986

    Google Scholar 

  5. K.H. Bläsius: Equality Reasoning Based on Graphs, SEKI-REPORT SR-87-01 (Ph.D. thesis), Fachbereich Informatik, Universität Kaiserslautern, 1987

    Google Scholar 

  6. R.S. Boyer, J.S. Moore: The Sharing of Structure in Theorem-proving Programs, Machine Intelligence 7, Edinburgh University Press, 101–116, 1972

    Google Scholar 

  7. D. Brand: Proving Theorems with the Modification Method, SIAM Journal of Comp., vol 4, No. 4, 1975

    Google Scholar 

  8. B. Buchberger: History and Basic Features of the Critical-Pair/Completion Procedure, Journal of Symbolic Computation, Vol. 3, Nos 1 & 2, 3–38, 1987

    Google Scholar 

  9. H.-J. Bürckert: Lazy Theory Unification in Prolog: An Extension of the Warren Abstract Machine, Proc. GWAI-86, IFB 124, Springer Verlag, 277–289, 1986

    Google Scholar 

  10. V.J. Digricoli: Resolution by Unification and Equality, Proc. 4th Workshop on Automated Deduction, Texas, 1979

    Google Scholar 

  11. V.J. Digricoli: The Management of Heuristic Search in Boolean Experiments with RUE-resolution, Proc. IJCAI-85, Los Angeles, 1985

    Google Scholar 

  12. G. Huet, D. Oppen: Equations and Rewrite Rules: A survey, Technical Report CSL-111, SRI International, 1980

    Google Scholar 

  13. R. Kowalski: A Proof Procedure Using Connection Graphs, JACM 22, 4, 1975

    Article  Google Scholar 

  14. C. Kirchner: Methods and Tools for Equational Unification, Proc. of Colloq. on Equations in Algebraic Structures, Lakeway, Texas, 1987

    Google Scholar 

  15. Y. Lim, L.J. Henschen: A New Hyperparamodulation Strategy for the Equality Relation, Proc. IJCAI-85, Los Angeles, 1985

    Google Scholar 

  16. E.L. Lusk, R.A. Overbeek: Data Structures and Control Architecture for Implementation of Theorem-Proving Programs, Proc. 5th CADE, Springer Lecture Notes, vol. 87, 232–249, 1980

    Google Scholar 

  17. J.B. Morris: E-resolution: An Extension of Resolution to include the Equality Relation, Proc. IJCAI, 1969, 287–294

    Google Scholar 

  18. W. Nutt, P. Rety, G. Smolka: Basic Narrowing Revisted, SEKI-Report SR-87-7, Univ. of Kaiserslautern, 1987; to appear in J. of Symbolic Computation, 1988

    Google Scholar 

  19. A. Newell, J.C. Shaw, H. Simon: Report on a General Problem Solving Program, Proc. Int. Conf. Information Processing (UNESCO). Paris, 1959

    Google Scholar 

  20. D. Plaisted: Theorem Proving with Abstraction, Artifical Intelligence 16, 47–108, 1981

    Article  Google Scholar 

  21. A. Präcklein: Equality Reasoning, Internal Working Paper, Univ. of Kaiserslautern, 1987

    Google Scholar 

  22. M. Richter: Logik Kalküle, Teubner Verlag, 1978

    Google Scholar 

  23. J.A. Robinson: A Machine-Oriented Logic Based on the Resolution Principle, JACM 12, 1965

    Google Scholar 

  24. M. Rusinowitch: Démonstration Automatique par des Techniques de Réécriture, Thèse d'état, CRIN, Centre de Recherche en Informatique de Nancy, 1987

    Google Scholar 

  25. G. Robinson, L. Wos: Paramodulation and TP in first order theories with equality, Machine Intelligence 4, 135–150, 1969

    Google Scholar 

  26. R.E. Shostak: An Algorithm for Reasoning About Equality, CACM, vol 21, no. 7, 1978

    Google Scholar 

  27. E.E. Sibert: A machine-oriented Logic incorporating the Equality Axiom, Machine Intelligence, vol 4, 103–133, 1969

    Google Scholar 

  28. J. Siekmann: Unification Theory, Proc. of European Conf. on Artificial Intelligence (ECAI), 1986 full paper to appear in J. of Symbolic Computation, 1988

    Google Scholar 

  29. G. Smolka, W. Nutt, J. Goguen, J. Meseguer: Order-sorted equational computation, in M. Nivat, H. Ait-Kaci (eds): Resolving Equational Systems, Addison-Wesley, to appear 1988

    Google Scholar 

  30. M. Stickel: Automated Deduction by Theory Resolution, Journal of Automated Reasoning Vol. 1, No. 4 (1985), 333–356

    Article  Google Scholar 

  31. J. Siekmann, G. Wrightson: Paramodulated Connectiongraphs, Acta Informatica 13, 67–86, 1980

    Article  Google Scholar 

  32. A. Tarski: Equational Logic and Equational Theories of Algebra, in: Schmidt et.al. (eds): Contribution to Mathematical Logic, North Holland, 1986

    Google Scholar 

  33. W. Taylor: Equational Logic, Houston Journal of Maths, 5, 1979

    Google Scholar 

  34. D.H.D. Warren: An Abstract Prolog Instruction Set, SRI Technical Note 309, Sri International, October 1983

    Google Scholar 

  35. L. Wos, R. Overbeek, E. Lusk, J. Boyle: Automated Reasoning, Introduction and Applications, Prentice Hall, 1984

    Google Scholar 

  36. L. Wos, G. Robinson, D. Carson, L. Shalla: The Concept of Demodulation in Theorem Proving, J. ACM 14, 698–709, 1967

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ewing Lusk Ross Overbeek

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bläsius, K.H., Siekmann, J.H. (1988). Partial unification for graph based equational reasoning. In: Lusk, E., Overbeek, R. (eds) 9th International Conference on Automated Deduction. CADE 1988. Lecture Notes in Computer Science, vol 310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0012846

Download citation

  • DOI: https://doi.org/10.1007/BFb0012846

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19343-2

  • Online ISBN: 978-3-540-39216-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics