Abstract
The problems of mechanizing equational reasoning are discussed and two prominent approaches (E-resolution and RUE-resolution) that build equality into a resolution based calculus are evaluated. Their relative strengths and weaknesses are taken as a motivation for our own approach, whose evolution is described.
The essential idea in our equational reasoning method is to store the information about partially unified terms in a graphlike structure. This explicit representation supports a goaldirected planning approach at various levels of abstraction.
This work was supported by the Sonderforschungsbereich 314, (Artificial Intelligence) of the German Research Agency (DFG).
Preview
Unable to display preview. Download preview PDF.
References
R. Anderson: Completeness results for E-resolution, Proc. Spring Joint Conf., 653–656, 1970
K.H. Bläsius, N. Eisinger, J. Siekmann, G. Smolka, A. Herold, C. Walther: The Markgraf Karl Refutation Procedure, Proc. IJCAI, 511–518, 1981
K.H. Bläsius: Equality Reasoning in Clause Graphs, Proc. IJCAI, 936–939, 1983
K.H. Bläsius: Against the ‘Anti Waltz Effect’ in Equality Reasoning, Proc. German Workshop on Artificial Intelligence, Informatik-Fachberichte 124, Springer, 230–241, 1986
K.H. Bläsius: Equality Reasoning Based on Graphs, SEKI-REPORT SR-87-01 (Ph.D. thesis), Fachbereich Informatik, Universität Kaiserslautern, 1987
R.S. Boyer, J.S. Moore: The Sharing of Structure in Theorem-proving Programs, Machine Intelligence 7, Edinburgh University Press, 101–116, 1972
D. Brand: Proving Theorems with the Modification Method, SIAM Journal of Comp., vol 4, No. 4, 1975
B. Buchberger: History and Basic Features of the Critical-Pair/Completion Procedure, Journal of Symbolic Computation, Vol. 3, Nos 1 & 2, 3–38, 1987
H.-J. Bürckert: Lazy Theory Unification in Prolog: An Extension of the Warren Abstract Machine, Proc. GWAI-86, IFB 124, Springer Verlag, 277–289, 1986
V.J. Digricoli: Resolution by Unification and Equality, Proc. 4th Workshop on Automated Deduction, Texas, 1979
V.J. Digricoli: The Management of Heuristic Search in Boolean Experiments with RUE-resolution, Proc. IJCAI-85, Los Angeles, 1985
G. Huet, D. Oppen: Equations and Rewrite Rules: A survey, Technical Report CSL-111, SRI International, 1980
R. Kowalski: A Proof Procedure Using Connection Graphs, JACM 22, 4, 1975
C. Kirchner: Methods and Tools for Equational Unification, Proc. of Colloq. on Equations in Algebraic Structures, Lakeway, Texas, 1987
Y. Lim, L.J. Henschen: A New Hyperparamodulation Strategy for the Equality Relation, Proc. IJCAI-85, Los Angeles, 1985
E.L. Lusk, R.A. Overbeek: Data Structures and Control Architecture for Implementation of Theorem-Proving Programs, Proc. 5th CADE, Springer Lecture Notes, vol. 87, 232–249, 1980
J.B. Morris: E-resolution: An Extension of Resolution to include the Equality Relation, Proc. IJCAI, 1969, 287–294
W. Nutt, P. Rety, G. Smolka: Basic Narrowing Revisted, SEKI-Report SR-87-7, Univ. of Kaiserslautern, 1987; to appear in J. of Symbolic Computation, 1988
A. Newell, J.C. Shaw, H. Simon: Report on a General Problem Solving Program, Proc. Int. Conf. Information Processing (UNESCO). Paris, 1959
D. Plaisted: Theorem Proving with Abstraction, Artifical Intelligence 16, 47–108, 1981
A. Präcklein: Equality Reasoning, Internal Working Paper, Univ. of Kaiserslautern, 1987
M. Richter: Logik Kalküle, Teubner Verlag, 1978
J.A. Robinson: A Machine-Oriented Logic Based on the Resolution Principle, JACM 12, 1965
M. Rusinowitch: Démonstration Automatique par des Techniques de Réécriture, Thèse d'état, CRIN, Centre de Recherche en Informatique de Nancy, 1987
G. Robinson, L. Wos: Paramodulation and TP in first order theories with equality, Machine Intelligence 4, 135–150, 1969
R.E. Shostak: An Algorithm for Reasoning About Equality, CACM, vol 21, no. 7, 1978
E.E. Sibert: A machine-oriented Logic incorporating the Equality Axiom, Machine Intelligence, vol 4, 103–133, 1969
J. Siekmann: Unification Theory, Proc. of European Conf. on Artificial Intelligence (ECAI), 1986 full paper to appear in J. of Symbolic Computation, 1988
G. Smolka, W. Nutt, J. Goguen, J. Meseguer: Order-sorted equational computation, in M. Nivat, H. Ait-Kaci (eds): Resolving Equational Systems, Addison-Wesley, to appear 1988
M. Stickel: Automated Deduction by Theory Resolution, Journal of Automated Reasoning Vol. 1, No. 4 (1985), 333–356
J. Siekmann, G. Wrightson: Paramodulated Connectiongraphs, Acta Informatica 13, 67–86, 1980
A. Tarski: Equational Logic and Equational Theories of Algebra, in: Schmidt et.al. (eds): Contribution to Mathematical Logic, North Holland, 1986
W. Taylor: Equational Logic, Houston Journal of Maths, 5, 1979
D.H.D. Warren: An Abstract Prolog Instruction Set, SRI Technical Note 309, Sri International, October 1983
L. Wos, R. Overbeek, E. Lusk, J. Boyle: Automated Reasoning, Introduction and Applications, Prentice Hall, 1984
L. Wos, G. Robinson, D. Carson, L. Shalla: The Concept of Demodulation in Theorem Proving, J. ACM 14, 698–709, 1967
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1988 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bläsius, K.H., Siekmann, J.H. (1988). Partial unification for graph based equational reasoning. In: Lusk, E., Overbeek, R. (eds) 9th International Conference on Automated Deduction. CADE 1988. Lecture Notes in Computer Science, vol 310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0012846
Download citation
DOI: https://doi.org/10.1007/BFb0012846
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-19343-2
Online ISBN: 978-3-540-39216-3
eBook Packages: Springer Book Archive