Abstract
Two variations of the graph searching problem, edge searching and node searching, are studied on several classes of chordal graphs, which include split graphs, interval graphs and k-starlike graphs.
Part of this research was supported by NSC85-2213-E-001-003.
Preview
Unable to display preview. Download preview PDF.
References
S. ARNBORG, D.G. CORNEIL, and A. PROSKUROWSKI, Complexity of finding embeddings in a k-tree, SIAM J. Alg. Disc. Meth., 8(1987), pp. 277–284.
H.L. BODLAENDER, T. KLOKS, and D. KRATSCH, Treewidth and pathwidth of permutation graphs, 20th ICALP, LNCS 700(1993), pp. 114–125.
H.L. BODLAENDER and R.H. MOHRING, The pathwidth and treewidth of cographs, SIAM J. Disc. Math., 6(1993), pp. 181–188.
D. BIENSTOCK and P. SEYMOUR, Monotonicity in graph searching, J. Algorithms, 12(1991), pp. 239–245.
F. GAVRIL, The intersection graphs of subtrees in trees are exactly the chordal graphs, J. Comb. Theory Ser. B, 16(1974), pp.47–56.
J. GUSTEDT, On the pathwidth of chordal graphs, Discr. Appl. Math. 45(1993), pp. 233–248.
N.G. KINNERSLEY, The vertex separation number of a graph equals its path-width, Inform. Process. Letter, 42(1992), pp. 345–350.
T. KLOKS, Treewidth, Ph.D. Thesis, Utrecht University, The Netherlands, 1993.
L.M. KIROUSIS and C.H. PAPADIMITRIOU, Interval graph and searching, Disc. Math. 55(1985), pp. 181–184.
L.M. KIROUSIS and C.H. PAPADIMITRIOU, Searching and pebbling, Theoretical Comp. Scie. 47(1986), pp. 205–218.
A. KORNAI and Z. TUZA, Narrowness, pathwidth, and their application in natural language processing, Disc. Appl. Math., 36(1992), pp. 87–92.
A.S. LAPAUGH, Recontamination does not help to search a graph, J. of the Assoc. Comput. Mach., 40(1993), pp. 224–245.
N. MEGIDDO, S.L. HAKIMI, M.R. GAREY, D.S. JOHNSON, and C.H. PAPADIMITRIOU, The complexity of searching a graph, J. of the Assoc. Comput. Mach., 35(1988), pp. 18–44.
R.H. MOHRING, Graph problems related to gate matrix layout and PLA folding, in: G. TINNHOFER et al., eds., Computational Graph Theory (Springer, Wien, 1990), pp. 17–32.
B. MONIEN and I.H. SUDBOROUGH, Min cut is NP — complete for edge weighted trees, Theoretical Comp. Scie. 58(1988), pp. 209–229.
T.D. PARSONS, Pursuit-evasion in a graph, in Y. ALAVI and D.R. LICK, eds., Theory and applications of graphs, Springer-Verlag, New York, 1976, pp. 426–441.
N. ROBERTSON and P.D. SEYMOUR, Graph minors I. Excluding a forest, J. Comb. Theory Ser. B, 35(1983), pp. 39–61.
P. SCHEFFLER, A linear algorithm for the pathwidth of trees, in: R. BODENDIEK and R. HENN, eds., Topics in Combinatorics and Graph Theory (Physica-Verlag, Heidelberg, 1990), pp. 613–620.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Peng, SL., Ko, MT., Ho, CW., Hsu, Ts., Tang, CY. (1996). Graph searching on chordal graphs. In: Asano, T., Igarashi, Y., Nagamochi, H., Miyano, S., Suri, S. (eds) Algorithms and Computation. ISAAC 1996. Lecture Notes in Computer Science, vol 1178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0009491
Download citation
DOI: https://doi.org/10.1007/BFb0009491
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-62048-8
Online ISBN: 978-3-540-49633-5
eBook Packages: Springer Book Archive