[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Graph searching on chordal graphs

  • Session 4b: Invited Presentation
  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1178))

Included in the following conference series:

  • 156 Accesses

Abstract

Two variations of the graph searching problem, edge searching and node searching, are studied on several classes of chordal graphs, which include split graphs, interval graphs and k-starlike graphs.

Part of this research was supported by NSC85-2213-E-001-003.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. ARNBORG, D.G. CORNEIL, and A. PROSKUROWSKI, Complexity of finding embeddings in a k-tree, SIAM J. Alg. Disc. Meth., 8(1987), pp. 277–284.

    Google Scholar 

  2. H.L. BODLAENDER, T. KLOKS, and D. KRATSCH, Treewidth and pathwidth of permutation graphs, 20th ICALP, LNCS 700(1993), pp. 114–125.

    Google Scholar 

  3. H.L. BODLAENDER and R.H. MOHRING, The pathwidth and treewidth of cographs, SIAM J. Disc. Math., 6(1993), pp. 181–188.

    Article  Google Scholar 

  4. D. BIENSTOCK and P. SEYMOUR, Monotonicity in graph searching, J. Algorithms, 12(1991), pp. 239–245.

    Article  Google Scholar 

  5. F. GAVRIL, The intersection graphs of subtrees in trees are exactly the chordal graphs, J. Comb. Theory Ser. B, 16(1974), pp.47–56.

    Article  Google Scholar 

  6. J. GUSTEDT, On the pathwidth of chordal graphs, Discr. Appl. Math. 45(1993), pp. 233–248.

    Article  Google Scholar 

  7. N.G. KINNERSLEY, The vertex separation number of a graph equals its path-width, Inform. Process. Letter, 42(1992), pp. 345–350.

    Article  Google Scholar 

  8. T. KLOKS, Treewidth, Ph.D. Thesis, Utrecht University, The Netherlands, 1993.

    Google Scholar 

  9. L.M. KIROUSIS and C.H. PAPADIMITRIOU, Interval graph and searching, Disc. Math. 55(1985), pp. 181–184.

    Article  Google Scholar 

  10. L.M. KIROUSIS and C.H. PAPADIMITRIOU, Searching and pebbling, Theoretical Comp. Scie. 47(1986), pp. 205–218.

    Google Scholar 

  11. A. KORNAI and Z. TUZA, Narrowness, pathwidth, and their application in natural language processing, Disc. Appl. Math., 36(1992), pp. 87–92.

    Article  Google Scholar 

  12. A.S. LAPAUGH, Recontamination does not help to search a graph, J. of the Assoc. Comput. Mach., 40(1993), pp. 224–245.

    Google Scholar 

  13. N. MEGIDDO, S.L. HAKIMI, M.R. GAREY, D.S. JOHNSON, and C.H. PAPADIMITRIOU, The complexity of searching a graph, J. of the Assoc. Comput. Mach., 35(1988), pp. 18–44.

    Google Scholar 

  14. R.H. MOHRING, Graph problems related to gate matrix layout and PLA folding, in: G. TINNHOFER et al., eds., Computational Graph Theory (Springer, Wien, 1990), pp. 17–32.

    Google Scholar 

  15. B. MONIEN and I.H. SUDBOROUGH, Min cut is NP — complete for edge weighted trees, Theoretical Comp. Scie. 58(1988), pp. 209–229.

    Google Scholar 

  16. T.D. PARSONS, Pursuit-evasion in a graph, in Y. ALAVI and D.R. LICK, eds., Theory and applications of graphs, Springer-Verlag, New York, 1976, pp. 426–441.

    Google Scholar 

  17. N. ROBERTSON and P.D. SEYMOUR, Graph minors I. Excluding a forest, J. Comb. Theory Ser. B, 35(1983), pp. 39–61.

    Google Scholar 

  18. P. SCHEFFLER, A linear algorithm for the pathwidth of trees, in: R. BODENDIEK and R. HENN, eds., Topics in Combinatorics and Graph Theory (Physica-Verlag, Heidelberg, 1990), pp. 613–620.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tetsuo Asano Yoshihide Igarashi Hiroshi Nagamochi Satoru Miyano Subhash Suri

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peng, SL., Ko, MT., Ho, CW., Hsu, Ts., Tang, CY. (1996). Graph searching on chordal graphs. In: Asano, T., Igarashi, Y., Nagamochi, H., Miyano, S., Suri, S. (eds) Algorithms and Computation. ISAAC 1996. Lecture Notes in Computer Science, vol 1178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0009491

Download citation

  • DOI: https://doi.org/10.1007/BFb0009491

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62048-8

  • Online ISBN: 978-3-540-49633-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics