Abstract
The peculiar shapes of neurons have been fascinating since their discovery in the late 1800’s, when the Golgi impregnation technique established circuits of neurons and glia to be the hallmark of brain organization. Although only a small fraction of all brain cells have been carefully measured, it is a natural complement to reductionism to try to logically re-construct brain circuitry using its basic units. This paper describes a computational strategy to produce virtual models of biological neural networks detailed at the micron level. Our algorithm uses cylindrical primitives in a virtual reality environment, and assembles them according to basic growth rules. Morphometric parameters (e.g., the axonal stem’s diameter) are measured from libraries of experimentally traced neurons and stored as statistical distributions. When the algorithm uses a parameter to generate a neuron (e.g. when an axon stems from the soma and its initial diameter needs to be determined), a value is stochastically sampled from the statistical distribution. This procedure can produce a large number of non-identical virtual neurons, whose morphological characteristics are statistically equivalent to those of the original experimental neuron. Thus, an amplification of morphometry data is achieved. This stochastic and statistical approach is highly efficient, allowing the creation of large-scale, anatomically accurate neural networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Golgi, C.: Sulla fina anatomia del cervelletto umano. Istologia Normale 1 (1874) 99–111
Ramon y Cajal, S.: Histology of the nervous system. Oxford Press, NY (1904) transl. 1995
Lorente del Nò, R.: Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system. J. Psychol. Neurol. Leipzig 46 (1934) 113–177
Strahler, A.: Quantitative analysis of geomorphology. Trans. Am. Geophys. Un. 38 (1957) 913–920.
Sholl, D.A.: Dendritic organization of the neurons of the visual and motor cortices of the cat. J. Anat. 87 (1953) 387–406
Uylings, H.B.M., Ruiz-Marcos, A., van Pelt, J.: The metric analysis of three-dimensional dendritic tree patterns: a methodological review. J. Neurosci. Meth. 18 (1986) 127–151.
Percheron, G.: Quantitative analysis of dendritic branching. I&II. Neurosci. Lett. 14 (1979) 287–293
Hockfield, S., McKay, R.D.G.: Identification of major cell classes in the developing mammalian nervous system. J. Neurosci. 5 (1985) 3310–3328
Prochiantz, A.: Neuronal Growth and Shape. Dev. Neurosci. 7 (1985) 189–198
Hillman, D.E.: Neuronal shape parameters and substructures as a basis of neuronal form. In: Schmitt, F., (ed.): The Neurosciences, Fourth study program. Cambridge, MA: MIT Press (1979) 477–498
Capowski, J.J.: The reconstruction, display, and analysis of neuronal structure using a computer. In Mize, R.R. (ed.) The microcomputer in cell and neurobiology research. Elsevier 4 (1985) 85–109
Wann, D.F., Woolsey, T.A., Dierker, M.L., Cowan, M.: An on-line digital-computer system for the semi-automatic analysis of Golgi-impregnated neurons. IEEE Trans. BME-20 N.4 (1973) 233–247
Glaser, E.M., Van der Loos, H.: A semi-automatic computer-microscope. Biophys. Soc. Proc. 8th annual meeting (1964)
Macagno, E.R., Levinthal, C., Sobel, I.: Three dimensional computer reconstruction of neurons and neuronal assemblies. Ann. Rev. Biophys. Bioeng. 8 (1979) 323–351
Senft, S.L.: A statistical framework to present developmental neuroanatomy. In Donahoe, J. (Ed.), Biobehavioral Foundations. Elsevier Press (1997)
Senft, S.L.: Derivation of neuron geometry from confocal scans. Neurosci. Abs. 21 (1995) 1078
Merkle, R.C.: Large scale analysis of neural structures. Xerox PARC technical report, CSL-89-10 November (1989) 89–173. http://www.merkle.com/merkleDir/brainAnalysis.html
Burke, R.E., Marks, W.B., Ulfhake, B.: A parsimonious description of motoneurons dendritic morphology using computer simulation. J. Neurosci. 12(6) (1992) 2403–2416
Tamori, Y.: Theory of dendritic morphology. Phys. Rev. E 48(4) (1993) 3124–3129
Solomon, F.: Endogenous specification of cell morphology. J. Cell Biol. 90 (1981) 547–553
Larkman, A.U.: Dendritic morphology of pyramidal neurones of the visual cortex of the rat: I. Branching patterns. J. Comp. Neurol. 306 (1991) 307–319
Amaral, D.G., Ishizuka, N., Claiborne, B.: Neurons, numbers and the hippocampal network. Progr. Brain Res. 83 (1990) 1–11
Bernard, C., Wheal, H.V.: Model of Local connectivity patterns in CA3 and CA1 areas of the hippocampus. Hippocampus 4 (1994) 497–529
Levy, W.B., Colbert, C.M., Desmond, N.L.: Another network model bites the dust: entorhinal inputs are no more than weakly excitatory in the hippocampal CAI region. Hippocampus 5 (1995) 137–40
Tamamaki, N., Nojyo, Y.: Preservation of topography in the connections between the subiculum, field CA1, and the entorhinal cortex in rats. J. Comp. Neur. 353 (1995) 379–390
Freund, T.F., Buzsaki, G.: Interneurons of the hippocampus. Hippocampus 6 (1996) 347–470
Ishizuka, N., Cowan, W.M., Amaral, D.G.: A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. J. Comp. Neurol. 362 (1995) 17–45
Pyapali, G.K., Sik, A., Penttonen, M., Buzsaki, G., Turner, D.A.: Dendritic properties of hippocampal CA1 pyramidal neurons in the rat: intracellular staining in vivo and in vitro. J. Comp. Neurol. 391 (1998) 335–352
Shepherd, G.M.G., Harris, K.M.: Three-dimensional structure and composition of CA3→CA1 axons in rat hippocampal slices. J. Neurosci. 18(20) (1998) 8300–8310
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Senft, S.L., Ascoli, G.A. (1999). Reconstruction of brain networks by algorithmic amplification of morphometry data. In: Mira, J., Sánchez-Andrés, J.V. (eds) Foundations and Tools for Neural Modeling. IWANN 1999. Lecture Notes in Computer Science, vol 1606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0098157
Download citation
DOI: https://doi.org/10.1007/BFb0098157
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66069-9
Online ISBN: 978-3-540-48771-5
eBook Packages: Springer Book Archive