[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

OTIS-Based multi-hop multi-OPS lightwave networks

  • Conference paper
  • First Online:
Parallel and Distributed Processing (IPPS 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1586))

Included in the following conference series:

  • 117 Accesses

Abstract

Advances in optical technology, such as low loss Optical Passive Star couplers (OPS) and the possibility of building tunable optical transmitters and receivers have increased the interest for multiprocessor architectures based on lightwave networks because of the vast bandwidth available. Many research have been done at both technological and theoretical level. An essential effort has to be done in linking those results. In this paper we propose optical designs for two multi-OPS networks: the single-hop POPS network and the multi-hop stack-Kautz network; using the Optical Transpose Interconnecting System (OTIS) architecture, from the Optoelectronic Computing Group of UCSD. In order to achieve our result, we also provide the optical design of a generalization of the Kautz digraph, using OTIS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Berge. Hypergraphes: Combinatoire des ensembles finis. Bordas, 1987.

    Google Scholar 

  2. J.-C. Bermond, C. Delorme, and J.J. Quisquater. Strategies for interconnection networks: some methods from graph theory. Graphs and Combinatorics, 5:107–123, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Berthomé and A. Ferreira. Improved embeddings in POPS networks through stack-graph models. In Third Internationnal Workshop on Massively Parallel Processing using Optical Interconnections, pages 130–135. IEEE Press, July 1996.

    Google Scholar 

  4. P. Berthomé and A. Ferreira, editors. Optical Interconnections and Parallel Processing: Trends at the Interface. Kluwer Academic, 1997.

    Google Scholar 

  5. M. Blume, G. Marsen, P. Marchand, and S. Esener. Optical Transpose Interconnection System for Vertical Emitters. OSA Topical Meeting on Optics in Computing, Lake Tahoe, March 1997.

    Google Scholar 

  6. M. Blume, F. McCormick, P. Marchand, and S. Esener. Array interconnect systems based on lenslets and CGH. Technical Report 2537-22, SPIE International Symposium on Optical Science, Engineering and Instrumentation, San Diego, 1995.

    Google Scholar 

  7. H. Bourdin, A. Ferreira, and K. Marcus. A performance comparison between graph and hypergraph topologies for passive star WDM lightwave networks. Computer Networks and ISDN Systems, 30:805–819, 1998.

    Article  Google Scholar 

  8. C. Brackett. Dense Wavelength Division Multiplexing Networks: Principles and Applications. IEEE Journal on Selected Areas in Communication, 8:947–964, 1990.

    Google Scholar 

  9. D. Chiarulli, S. Levitan, R. Melhem, J. Teza, and G. Gravenstreter. Partitioned Optical Passive Star (POPS) Topologies for Multiprocessor Interconnection Networks with Distributed Control. IEEE Journal of Lightwave Technology, 14(7):1601–1612, 1996.

    Article  Google Scholar 

  10. I. Chlamtac and A. Fumagalli. Quadro-star: A high performance optical wdm star network. IEEE Transactions on Communications, 42(8):2582–2591, aug 1994.

    Article  Google Scholar 

  11. D. Coudert, A. Ferreira, and X. Muñoz. Multiprocessor Architectures Using Multihops Multi-OPS Lightwave Networks and Distributed Control. In IEEE International Parallel Processing Symposium, pages 151–155. IEEE Press, 1998.

    Google Scholar 

  12. M. Feldman, S. Esener, C. Guest, and S. Lee. Comparison between electrical and free-space optical interconnects based on power and speed considerations. Applied Optics, 27(9):1742–1751, May 1988.

    Article  Google Scholar 

  13. M.A. Fiol, J.L.A. Yebra, and I. Alegre. Line digraphs iterations and the (d,k) digraph problem. IEEE Trans. on Computers C-33, 400–403, 1984.

    MATH  Google Scholar 

  14. D. Gardner, P. Harvey, L. Hendrick, P. Marchand, and S. Esene. Photorefractive Beamsplitter For Free Space Optical Interconnection systems. Applied Optics, (37):6178–6181, September 1998.

    Google Scholar 

  15. M. Imase and M. Itoh. Design to Minimize Diameter on Building-Block Network. IEEE Transactions on Computers, C-30(6):439–442, June 1981.

    MATH  MathSciNet  Google Scholar 

  16. M. Imase and M. Itoh. A Design for Directed Graphs with Minimum Diameter. IEEE Transactions on Computers, C-32(8):782–784, August 1983.

    MATH  Google Scholar 

  17. M. Imase, T. Soneoka, and K. Okada. A fault-tolerant processor interconnection network. Systems and Computers in Japan, 17(8), 1986.

    Google Scholar 

  18. W.H. Kautz. Bounds on directed (d,k) graphs. Theory of cellular logic networks and machines. AFCRL-68-0668 Final report, 20–28, 1968.

    Google Scholar 

  19. G. Marsen, P. Marchand, P. Harvey, and S. Esener. Optical transpose interconnection system architectures. Optics Letters, 18(13):1083–1085, July 1993.

    Article  Google Scholar 

  20. B. Mukherjee. WDM-based local lightwave networks part I: Single-hop systems. IEEE Networks, pages 12–27, may 1992.

    Google Scholar 

  21. B. Mukherjee. WDM-based local lightwave networks part II: Multi-hop systems. IEEE Networks, pages 20–32, July 1992.

    Google Scholar 

  22. K.N. Sivarajan and R. Ramaswami. Lightwave Networks Based on de Bruijn Graphs. IEEE/ACM Transactions on Networking, 2(1):70–79, apr 1994.

    Article  Google Scholar 

  23. F. Sugihwo, M. Larson, and J Harris. Low Threshold Continuously Tunable Vertical-Cavity-Surface-Emitting-Lasers with 19.1 nm Wavelength Range. Applied Physics Letters, 70:547, 1997.

    Article  Google Scholar 

  24. F. Zane, P. Marchand, R. Paturi, and S. Esener. Scalable Network Architectures Using The Optical Transpose Interconnection System. In Massively Parallel Processing using Optical Interconnections, pages 114–121. IEEE Press, Oct. 1996.

    Google Scholar 

  25. Z. Zhang and A.S. Acampora. Performance analysis of multihop lightwave networks with hot potato routing and distance-age-priorities. IEEE Transactions on Communications, 42(8):2571–2581, aug 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Rolim Frank Mueller Albert Y. Zomaya Fikret Ercal Stephan Olariu Binoy Ravindran Jan Gustafsson Hiroaki Takada Ron Olsson Laxmikant V. Kale Pete Beckman Matthew Haines Hossam ElGindy Denis Caromel Serge Chaumette Geoffrey Fox Yi Pan Keqin Li Tao Yang G. Chiola G. Conte L. V. Mancini Domenique Méry Beverly Sanders Devesh Bhatt Viktor Prasanna

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Coudert, D., Ferreira, A., Muñoz, X. (1999). OTIS-Based multi-hop multi-OPS lightwave networks. In: Rolim, J., et al. Parallel and Distributed Processing. IPPS 1999. Lecture Notes in Computer Science, vol 1586. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0097975

Download citation

  • DOI: https://doi.org/10.1007/BFb0097975

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65831-3

  • Online ISBN: 978-3-540-48932-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics