Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Baumgartner, J.E., Taylor, A.D., and Wagon, S., Structural properties of ideals, Dissertationes Mathematicae CXCVII, 1982.
Blass, A.R., Orderings of Ultrafilters, Doctoral Dissertation, Harvard University, 1970.
Carr, Donna M., The minimal normal filter on P κ λ Proc. Amer. Math. Soc., 86 (1982), 316–320.
Carr, Donna M., P κ λ partition relations, Fund. Math., 128 (1987), 181–195.
Carr, Donna M., A note on the λ-Shelah property, Fund. Math., 128 (1987) 197–198.
Carr, Donna M., and Pelletier, Donald H., Towards a structure theory for ideals on P κ λ II, in preparation.
DiPrisco, C.A., Combinatorial properties and supercompact cardinals, Ph.D Thesis, M.I.T., 1976.
DiPrisco, C.A., and Marek, W., Some aspects of the theory of large cardinals, Mathematical Logic and Formal Systems (L.P. de Alcantara, editor), Marcel Dekker, 1985, 87–139.
Fodor, G., Eine bemerkung zur theorie der regressiven funktionen, Acta. Sci. Math. (Szeged), 17 (1956), 139–142.
Jech, Thomas J., Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic 5 (1973), 165–198.
Jech, Thomas J., Set Theory, Academic Press, 1978.
Johnson, C.A., Some partition relations for ideals on P κ λ, preprint.
Kunen, Kenneth, and Pelletier, Donald H., On a combinatorial property of Menas related to the partition property for measures on supercompact cardinals, J. Sym. Logic, 48 (1983), 475–481.
Magidor, M., There are many normal ultrafilters corresponding to a supercompact cardinal, Israel J. Math. 9 (1971), 186–192.
Menas, T.K., A combinatorial property of P κ λ, J. Sym. Logic, 41 (1976), 225–234.
Neumer, W., Verallgemeinerung eines Satzes von Alexandroff und Urysohn, Math. Zeit., 54 (1951), 254–261.
Pelletier, Donald H., A simple proof and generalization of Weglorz’ characterization of normality for ideals, Rocky Mountain J. Math., 11 (1981), 605–609.
Rowbottom, F., Some strong axioms of infinity incompatible with the axiom of constructibility, Ann. Math. Logic, 3 (1971), 1–44.
Shelah, S., The existence of coding sets, Lecture Notes in Mathematics, no. 1182, Springer-Verlag, Berlin, 1986, 188–202.
Shelah, S., More on stationary coding, Lecture Notes in Mathematics, no. 1182, Springer-Verlag, Berlin, 1986, 224–246.
Solovay, R., Reinhardt, W., and Kanamori, A., Strong axioms of infinity and elementary embeddings, Ann. Math. Logic 13 (1977), 73–116.
Weglorz, B., Some properties of filters, Lecture Notes in Mathematics, no. 619, Springer-Verlag, Berlin, 1977, 311–329.
Zwicker, W.S., P κ λ combinatorics I, Axiomatic Set Theory, (Baumgartner, Martin, Shelah, editors) Contemporary Mathematics, vol. 31, American Mathematical Society, 1984, 243–259.
Zwicker, W.S., Lecture notes on the structural properties of ideals on P κ λ, handwritten notes, July 1984.
Zwicker, W.S., Notes for a lecture delivered to the Conference on Set Theory and its Applications at York University in August 1987.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1989 Springer-Verlag
About this paper
Cite this paper
Carr, D.M., Pelletier, D.H. (1989). Towards a structure theory for ideals on Pκλ. In: Steprāns, J., Watson, S. (eds) Set Theory and its Applications. Lecture Notes in Mathematics, vol 1401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0097330
Download citation
DOI: https://doi.org/10.1007/BFb0097330
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-51730-6
Online ISBN: 978-3-540-46795-3
eBook Packages: Springer Book Archive