[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Towards a structure theory for ideals on Pκλ

  • Conference paper
  • First Online:
Set Theory and its Applications

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1401))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 31.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 40.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumgartner, J.E., Taylor, A.D., and Wagon, S., Structural properties of ideals, Dissertationes Mathematicae CXCVII, 1982.

    Google Scholar 

  2. Blass, A.R., Orderings of Ultrafilters, Doctoral Dissertation, Harvard University, 1970.

    Google Scholar 

  3. Carr, Donna M., The minimal normal filter on P κ λ Proc. Amer. Math. Soc., 86 (1982), 316–320.

    MathSciNet  MATH  Google Scholar 

  4. Carr, Donna M., P κ λ partition relations, Fund. Math., 128 (1987), 181–195.

    MathSciNet  MATH  Google Scholar 

  5. Carr, Donna M., A note on the λ-Shelah property, Fund. Math., 128 (1987) 197–198.

    MathSciNet  MATH  Google Scholar 

  6. Carr, Donna M., and Pelletier, Donald H., Towards a structure theory for ideals on P κ λ II, in preparation.

    Google Scholar 

  7. DiPrisco, C.A., Combinatorial properties and supercompact cardinals, Ph.D Thesis, M.I.T., 1976.

    Google Scholar 

  8. DiPrisco, C.A., and Marek, W., Some aspects of the theory of large cardinals, Mathematical Logic and Formal Systems (L.P. de Alcantara, editor), Marcel Dekker, 1985, 87–139.

    Google Scholar 

  9. Fodor, G., Eine bemerkung zur theorie der regressiven funktionen, Acta. Sci. Math. (Szeged), 17 (1956), 139–142.

    MathSciNet  MATH  Google Scholar 

  10. Jech, Thomas J., Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic 5 (1973), 165–198.

    Article  MathSciNet  MATH  Google Scholar 

  11. Jech, Thomas J., Set Theory, Academic Press, 1978.

    Google Scholar 

  12. Johnson, C.A., Some partition relations for ideals on P κ λ, preprint.

    Google Scholar 

  13. Kunen, Kenneth, and Pelletier, Donald H., On a combinatorial property of Menas related to the partition property for measures on supercompact cardinals, J. Sym. Logic, 48 (1983), 475–481.

    Article  MathSciNet  MATH  Google Scholar 

  14. Magidor, M., There are many normal ultrafilters corresponding to a supercompact cardinal, Israel J. Math. 9 (1971), 186–192.

    Article  MathSciNet  MATH  Google Scholar 

  15. Menas, T.K., A combinatorial property of P κ λ, J. Sym. Logic, 41 (1976), 225–234.

    MathSciNet  MATH  Google Scholar 

  16. Neumer, W., Verallgemeinerung eines Satzes von Alexandroff und Urysohn, Math. Zeit., 54 (1951), 254–261.

    Article  MathSciNet  MATH  Google Scholar 

  17. Pelletier, Donald H., A simple proof and generalization of Weglorz’ characterization of normality for ideals, Rocky Mountain J. Math., 11 (1981), 605–609.

    Article  MathSciNet  MATH  Google Scholar 

  18. Rowbottom, F., Some strong axioms of infinity incompatible with the axiom of constructibility, Ann. Math. Logic, 3 (1971), 1–44.

    Article  MathSciNet  MATH  Google Scholar 

  19. Shelah, S., The existence of coding sets, Lecture Notes in Mathematics, no. 1182, Springer-Verlag, Berlin, 1986, 188–202.

    Google Scholar 

  20. Shelah, S., More on stationary coding, Lecture Notes in Mathematics, no. 1182, Springer-Verlag, Berlin, 1986, 224–246.

    Google Scholar 

  21. Solovay, R., Reinhardt, W., and Kanamori, A., Strong axioms of infinity and elementary embeddings, Ann. Math. Logic 13 (1977), 73–116.

    Article  MathSciNet  MATH  Google Scholar 

  22. Weglorz, B., Some properties of filters, Lecture Notes in Mathematics, no. 619, Springer-Verlag, Berlin, 1977, 311–329.

    MATH  Google Scholar 

  23. Zwicker, W.S., P κ λ combinatorics I, Axiomatic Set Theory, (Baumgartner, Martin, Shelah, editors) Contemporary Mathematics, vol. 31, American Mathematical Society, 1984, 243–259.

    Google Scholar 

  24. Zwicker, W.S., Lecture notes on the structural properties of ideals on P κ λ, handwritten notes, July 1984.

    Google Scholar 

  25. Zwicker, W.S., Notes for a lecture delivered to the Conference on Set Theory and its Applications at York University in August 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Juris Steprāns Stephen Watson

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

Carr, D.M., Pelletier, D.H. (1989). Towards a structure theory for ideals on Pκλ. In: Steprāns, J., Watson, S. (eds) Set Theory and its Applications. Lecture Notes in Mathematics, vol 1401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0097330

Download citation

  • DOI: https://doi.org/10.1007/BFb0097330

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51730-6

  • Online ISBN: 978-3-540-46795-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics