[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Iterated length-preserving rational transductions

Extended abstract

  • Contributed Papers
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1998 (MFCS 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1450))

Abstract

The purpose of this paper is the study of the smallest family of transductions containing length-preserving rational transductions and closed under union, composition and iteration. We give several characterizations of this class using restricted classes of length-preserving transductions, by showing the connections with “context-sensitive transductions” and transductions associated with recognizable picture languages. We also study the class obtained by only using length-preserving rational functions and we show the relations with “deterministic context-sensitive transductions”.

This work was partially supported by the group MOSYDIS of the PRC/GDR AMI

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, A., and Latteux, M.: A new proof of two theorems about rational transductions. Theoretical Computer Science 8, 2 (1979), 261–263.

    Article  MATH  MathSciNet  Google Scholar 

  2. Berstel, J.: Transductions and Context-Free Languages. Teubner Studienbücher, Stuttgart, 1979.

    MATH  Google Scholar 

  3. Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press, New York, 1974.

    MATH  Google Scholar 

  4. Elgot, C. C., and Mezei, J. E.: On relations defined by generalized finite automata. IBM Journal of Research and Development 9 (1965), 47–68.

    Article  MATH  MathSciNet  Google Scholar 

  5. Giammarresi, D., and Restivo, A.: Two-dimensional languages. In Handbook of Formal Languages, A. Salomaa and G. Rozenberg, Eds., vol. 3. Springer-Verlag, Berlin, 1997, pp. 215–267.

    Google Scholar 

  6. Greibach, S. A.: Full AFL's and nested iterated substitution. Information and Control 16, 1 (1970), 7–35.

    Article  MATH  MathSciNet  Google Scholar 

  7. Kuroda, S.-Y.: Classes of languages and linear bounded automata. Information and Control 7, 2 (1964), 207–223.

    Article  MATH  MathSciNet  Google Scholar 

  8. Latteux, M., and Simplot, D.: Context-sensitive string languages and recognizable picture languages. Information and Computation 138, 2 (1997), 160–169.

    Article  MATH  MathSciNet  Google Scholar 

  9. Latteux, M., Simplot, D., and Terlutte, A.: Iterated length-preserving transductions. Tech. Rep. it-312, L.I.F.L., Univ. Lille 1 France, March 1998.

    Google Scholar 

  10. Mezei, J., and Wright, J. B.: Algebraic Automata and Context-Free Sets. Information and Control 11, 2–3 (1967), 3–29.

    Article  MATH  MathSciNet  Google Scholar 

  11. Nivat, M.: Transductions des langages de Chomsky. Ann. de l'Inst. Fourier 18 (1968), 339–456.

    MATH  MathSciNet  Google Scholar 

  12. Schützenberger, M. P.: Sur les relations rationnelles entre monodes libres. Theoretical Computer Science 3, 2 (1976), 243–259.

    Article  MathSciNet  Google Scholar 

  13. Turakainen, P.: Transducers and compositions of morphisms and inverse morphisms. In Studies in honour of Arto Kustaa Salomaa on the occasion of his fiftieth birthday (1984), vol. 186 of Ann. Univ. Turku. Ser. A I, pp. 118–128.

    MATH  MathSciNet  Google Scholar 

  14. Wood, D.: Iterated α-NGSM maps and γ systems. Information and Control 32, 1 (1976), 1–26.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Luboš Brim Jozef Gruska Jiří Zlatuška

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Latteux, M., Simplot, D., Terlutte, A. (1998). Iterated length-preserving rational transductions. In: Brim, L., Gruska, J., Zlatuška, J. (eds) Mathematical Foundations of Computer Science 1998. MFCS 1998. Lecture Notes in Computer Science, vol 1450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055778

Download citation

  • DOI: https://doi.org/10.1007/BFb0055778

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64827-7

  • Online ISBN: 978-3-540-68532-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics