Abstract
An approach is introduced for developing neural network pattern recognition systems using a hybrid evolutionary learning system for pattern recognition (HELPR) concept. A genetic algorithm is used to assemble detectors and pattern recognition systems while traditional weight training methods are used to determine weights. The results show that this novel approach develops simpler neural topologies than cascade correlation and can do so using very simple training metrics.
Preview
Unable to display preview. Download preview PDF.
Bibliography
Duda, R.O. and P.E. Hart, 1973. Pattern Classification and Scene Analysis, Wiley.
Fahlman, Scott E. and Christian Lebiere, 1990. “The Cascade-Correlation Learning Architecture,” CMU-CS-90-100.
Fisher, R. A., 1936. “The use of multiple measures in taxonomic problems,” Ann. Eugenics, 7, Part II, pp. 179–188.
Fujita, Osamu, 1992. “Optimization of the Hidden Unit Function in Feedforward Neural Networks,” Neural Networks, Vol. 5, pp. 755–764.
Goldberg, D. E., 1989. Genetic Algorithms in Search, Optimization, and Machine Learning, Reading, MA: AddisonWesley.
Hush, Don R. and Bill G. Home, 1993. “Progress in Supervised Neural Networks,” IEEE SP.
Merz, C.J., & Murphy, P.M. (1996). UCI Repository of machine learning databases [http://www.ics.uci.edu/∼mlearn/MLRepository.html]. Irvine, CA: University of California, Department of Information and Computer Science.
Rizki, M. M., L. A. Tamburino, and M. A. Zmuda, 1993. “Evolving multi-resolution feature detectors.” In Proceedings of the Second Annual Conference on Evolutionary Learning, eds. D. B. Fogel and W. Atmar, La Jolla, CA: Evolutionary Programming Society, pp. 57–66.
Rizki, M. M., L. A. Tamburino, and M. A. Zmuda, 1994. “EMORPH: A two phased learning system for evolving morphological classification systems.” In Proceedings of the Third Annual Conference on Evolutionary Learning, eds. A. V. Sebald and L. J. Fogel, River Edge, NJ: World Scientific, pp. 60–67.
Rizki, M. M., L. A. Tamburino, and M. A. Zmuda, 1995. “Evolution of morphological recognition systems.” In Evolutionary Programming IV, eds. J. R. McDonnell, R. G. Reynolds, and D. B. Fogel, MIT Press, Cambridge, MA, pp. 95–106.
Tamburino, L. A. and M. M. Rizki, 1992. “Performance driven autonomous design of pattern recognition systems”, Intern. J. of App. Art. Intel., 6, pp. 59–77.
Therrien, Charles W., 1989. Decision Estimation and Classification, Wiley.
Wicker, D.W., M.M. Rizki, and L. A. Tamburino, 1996. “HELPR: A hybrid evolutionary system for pattern recognition,” ADPE'96.
Zmuda, M. A., M. M. Rizki, and L. A. Tamburino, 1992. “Automatic generation of morphological sequences,” SPIE Conference on Image Algebra and Morphological Image Processing III, pp. 106–118.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wicker, D., Rizki, M.M., Tamburino, L.A. (1998). A hybrid evolutionary learning system for synthesizing neural network pattern recognition systems. In: Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds) Evolutionary Programming VII. EP 1998. Lecture Notes in Computer Science, vol 1447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0040813
Download citation
DOI: https://doi.org/10.1007/BFb0040813
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64891-8
Online ISBN: 978-3-540-68515-9
eBook Packages: Springer Book Archive