[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A hybrid evolutionary learning system for synthesizing neural network pattern recognition systems

  • Conference paper
  • First Online:
Evolutionary Programming VII (EP 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1447))

Included in the following conference series:

Abstract

An approach is introduced for developing neural network pattern recognition systems using a hybrid evolutionary learning system for pattern recognition (HELPR) concept. A genetic algorithm is used to assemble detectors and pattern recognition systems while traditional weight training methods are used to determine weights. The results show that this novel approach develops simpler neural topologies than cascade correlation and can do so using very simple training metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Duda, R.O. and P.E. Hart, 1973. Pattern Classification and Scene Analysis, Wiley.

    Google Scholar 

  • Fahlman, Scott E. and Christian Lebiere, 1990. “The Cascade-Correlation Learning Architecture,” CMU-CS-90-100.

    Google Scholar 

  • Fisher, R. A., 1936. “The use of multiple measures in taxonomic problems,” Ann. Eugenics, 7, Part II, pp. 179–188.

    Google Scholar 

  • Fujita, Osamu, 1992. “Optimization of the Hidden Unit Function in Feedforward Neural Networks,” Neural Networks, Vol. 5, pp. 755–764.

    Google Scholar 

  • Goldberg, D. E., 1989. Genetic Algorithms in Search, Optimization, and Machine Learning, Reading, MA: AddisonWesley.

    Google Scholar 

  • Hush, Don R. and Bill G. Home, 1993. “Progress in Supervised Neural Networks,” IEEE SP.

    Google Scholar 

  • Merz, C.J., & Murphy, P.M. (1996). UCI Repository of machine learning databases [http://www.ics.uci.edu/∼mlearn/MLRepository.html]. Irvine, CA: University of California, Department of Information and Computer Science.

    Google Scholar 

  • Rizki, M. M., L. A. Tamburino, and M. A. Zmuda, 1993. “Evolving multi-resolution feature detectors.” In Proceedings of the Second Annual Conference on Evolutionary Learning, eds. D. B. Fogel and W. Atmar, La Jolla, CA: Evolutionary Programming Society, pp. 57–66.

    Google Scholar 

  • Rizki, M. M., L. A. Tamburino, and M. A. Zmuda, 1994. “EMORPH: A two phased learning system for evolving morphological classification systems.” In Proceedings of the Third Annual Conference on Evolutionary Learning, eds. A. V. Sebald and L. J. Fogel, River Edge, NJ: World Scientific, pp. 60–67.

    Google Scholar 

  • Rizki, M. M., L. A. Tamburino, and M. A. Zmuda, 1995. “Evolution of morphological recognition systems.” In Evolutionary Programming IV, eds. J. R. McDonnell, R. G. Reynolds, and D. B. Fogel, MIT Press, Cambridge, MA, pp. 95–106.

    Google Scholar 

  • Tamburino, L. A. and M. M. Rizki, 1992. “Performance driven autonomous design of pattern recognition systems”, Intern. J. of App. Art. Intel., 6, pp. 59–77.

    Google Scholar 

  • Therrien, Charles W., 1989. Decision Estimation and Classification, Wiley.

    Google Scholar 

  • Wicker, D.W., M.M. Rizki, and L. A. Tamburino, 1996. “HELPR: A hybrid evolutionary system for pattern recognition,” ADPE'96.

    Google Scholar 

  • Zmuda, M. A., M. M. Rizki, and L. A. Tamburino, 1992. “Automatic generation of morphological sequences,” SPIE Conference on Image Algebra and Morphological Image Processing III, pp. 106–118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

V. W. Porto N. Saravanan D. Waagen A. E. Eiben

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wicker, D., Rizki, M.M., Tamburino, L.A. (1998). A hybrid evolutionary learning system for synthesizing neural network pattern recognition systems. In: Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds) Evolutionary Programming VII. EP 1998. Lecture Notes in Computer Science, vol 1447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0040813

Download citation

  • DOI: https://doi.org/10.1007/BFb0040813

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64891-8

  • Online ISBN: 978-3-540-68515-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics