Abstract
A model for ontogenetic development of receptive fields in the visual nervous system is presented. The model uses a semistochastic approach where random uncorrelated activity is generated in the input layer and propagated through the network. The evolution of the synaptic connections between two neurons are assumed to be a function of their activity, with two interpretations of the Hebb's rule: (a) the synaptic weight is modified proportional to the product of the activity of the two connected neurons; and (b) proportional to the statistical correlation of their activity. Both models explain the origin of either on-off and off-on receptive fields with symetric and non symetric forms. These results agree with previous models based on deterministic equations. The approach presented here has two main advantages. Firstly the lower computer time that allows the study of more complex architectures. And secondly, the possibility of the extension of this model to cover more complex behavior, for instance, the inclusion of time delay in the transmition of the activity between layers.
Preview
Unable to display preview. Download preview PDF.
References
Andrade, M. A. & F. Morán. (1996) Structural study of the development of ocularity domains using a neural network model. Biol. Cybern. 74: 243–254
Andrade, M. A. & F. Morán (1997) Receptive field map development by anti-hebbian learning. Neural Networks (in press.)
Frégnac, Y. & M. Imbert. 1984. Development of neuronal selectivity in primary visual cortex of cat. Physiol. Rev. 64, 325–434
Haussler, A.F. & C. von der Malsburg. 1983. Development of retinotopic projections: an analytical treatment. J. Theor. Biol. 2, 47–73
Hebb, D.O. 1949. The Organization of Behaviour, New York:Wiley, Introduction and Chapter 4,'The first stage of perception: growth of the assembly', pp.xi–xix, 60–78
Linsker, R. 1986a. From basic network principles to neural architecture: Emergence of spatial-opponent cells. Proc. Natl. Acad. Sci. USA. 83, 7508–7512
Linsker, R. 1986b. From basic network principles to neural architecture: Emergence of orientation-selective cells. Proc. Natl. Acad. Sci. USA. 83, 8390–8394
Linsker, R. 1986c. From basic network principles to neural architecture: Emergence of orientation columns. Proc. Natl. Acad. Sci. USA. 83, 8779–8783
Orban, G.A. (1984). Studies on Brain Function. Neuronal Operations in the Visual Cortex. Berlin: Springer-Verlag
Miller, K.D. 1992. Development of orientation columns via competition between ON-and OFF-center inputs. NeuroReport, 3, 73–76
von der Malsburg, C. 1973. Self-organization of orientation sensitive cells in the striate cortex. Kybernetic. 14, 85–100
von der Malsburg, C. 1990. Network self-organization. In An Introduction to Neural and Electronic Networks. (S.F. Zornetzer, J.L. Davis, and C.Lau, eds.), San Diego, CA: Academic Press, 421–432
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Muro, E.M., Isasi, P., Andrade, M.A., Morán, F. (1997). Development of on-off and off-on receptive fields using a semistochastic model. In: Mira, J., Moreno-Díaz, R., Cabestany, J. (eds) Biological and Artificial Computation: From Neuroscience to Technology. IWANN 1997. Lecture Notes in Computer Science, vol 1240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0032461
Download citation
DOI: https://doi.org/10.1007/BFb0032461
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63047-0
Online ISBN: 978-3-540-69074-0
eBook Packages: Springer Book Archive