Abstract
A mathematical model is presented which enables to give a meaningful interpretation to the assertion "with a probability greater than 1-ɛ the finite sequence of letters under consideration is an initial segment of a relatively simple infinite recursive sequence" and to give an at least potential possibility how to test the validity of such an assertion. The model is based on a modified version of Kolmogorov algorithmic complexity of sequences of letters and the results are compared with those offered by the classical statistical hypothesis testing theory.
Preview
Unable to display preview. Download preview PDF.
References
A. N. Kolmogorov: Tri podchoda k kvantitativnomu opredeleniju informacii. Problemy peredači informacii vol. 1(1965), pp. 4–7.
T. L. Fine: Theories of Probability — an Examination of Foundations. Academic Press, New York — London, 1973.
E. L. Lehmann: Testing Statistical Hypotheses. J. Wiley & Sons — Chapman & Hall, New York — London, 1960.
J. S. Chow, H. Teicher: Probability Theory — Independence, Interchangeability, Martingales. Springer-Verlag, Berlin — Heidelberg — New York, 1978.
I. Kramosil: Non-Deterministic Prediction Based on Algorithmic Complexity. Submitted for publication.
M. Esmenjaud-Bonnardel: Étude statistique des decimals de pí. Rev. française Trait. Inf. vol. 8(1965), pp. 295–306.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1985 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kramosil, I. (1985). Statistical testing of finite sequences based on algorithmic complexity. In: Budach, L. (eds) Fundamentals of Computation Theory. FCT 1985. Lecture Notes in Computer Science, vol 199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0028805
Download citation
DOI: https://doi.org/10.1007/BFb0028805
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-15689-5
Online ISBN: 978-3-540-39636-9
eBook Packages: Springer Book Archive