Preview
Unable to display preview. Download preview PDF.
References
E. Allender and R. Rubinstein, P-printable sets, SIAM J. Comput., to appear.
E. Allender and O. Watanabe, Kolmogorov complexity and degrees of tally sets, Proc. 3rd IEEE Conf. Structure in Complexity Theory, 1988, to appear.
K. Ambos-Spies, Randomness, relativizations and polynomial reducibilities, Proc. 1st Conf. Structure in Complexity Theory, LNCS 223, 1986, 23–34.
A. Amir and W. Gasarch, Polynomial terse sets, Proc. 2nd IEEE Conf. Structure in Complexity Theory, 1987, 22–27.
L. Babai, Trading group theory for randomness, Proc. 17th ACM Symp. Theory of Computing, 1985, 421–429.
J. Balcázar and R. Book, Sets with small generalized Kolmogorov complexity, Acta Informatica 23 (1986), 679–688.
J. Balcázar, R. Book, and U. Schöning, The polynomial-time hierarchy and sparse oracles, J. Assoc. Comput. Mach. 33 (1986), 603–617.
J. Balcázar, J. Díaz, and J. Gabarró, Structural Complexity I, Springer-Verlag, 1988.
R. Beigel, A structural theorem that depends quantitatively on the complexity of SAT, Proc. 2nd IEEE Conf. Structure in Complexity Theory, 1987, 28–32.
C. Bennett and J. Gill, Relative to a random oracle, P A ≠ N P A ≠ co − N P A with probability 1, SIAM J. Comput. 10 (1981), 96–113.
L. Berman and J. Hartmanis, On isomorphisms and density of NP and other complete sets, SIAM J. Comput. 6 (1977), 305–322.
P. Berman, Relationships between density and deterministic complexity of NP-complete languages, Automata, Languages and Programming — 78, LNCS 62, 1978, 63–71.
R. Book, Bounded query machines: on NP and PSPACE, Theoret. Comput. Sci. 15 (1981), 27–39.
R. Book and K. Ko, On sets truth-table reducible to sparse sets, SIAM J. Comput. 17 (1988), to appear. Also see Proc. 2nd IEEE Conf. Structure in Complexity Theory 1987, 147–155.
R. Book and C. Wrathall, Bounded query machines: on NP() and NPQUERY(), Theoret. Comput. Sci. 15 (1981), 41–50.
R. Book, P. Orponen, D. Russo, and O. Watanabe, Lowness properties in the exponent-time hierarcy, SIAM J. Comput. 17 (1988), to appear.
S. Fortune, A note on sparse complete sets, SIAM J. Comput. 8 (1979), 431–433.
S. Goldwasser and M. Sipser, Private coins in interactive proof systems, Proc. 18th ACM Symp. Theory of Computing 1986, 59–68.
J. Hartmanis, Generalized Kolmogorov complexity and the structure of feasible computations, Proc. 24th IEEE Symp. Foundations of Computer Science 1983, 439–445.
J. Hartmanis and L. Hemachandra, On sparse oracles separating feasible complexity classes, STACS-86, LNCS 210, 1986, 321–333.
R. Karp and R. Lipton, Some connections between nonuniform and uniform complexity classes, Proc. 12th ACM Symp. Theory of Computing 1980, 302–309.
K. Ko, Continuous optimization problems and a polynomial hierarchy of real functions, J. Complexity 1 (1985), 210–231.
K. Ko, On the notion of infinite pseudo random sequences, Theoret. Comput. Sci. 48 (1988), 9–33.
K. Ko, Distinguishing reducibilities by sparse sets, Proc. 3rd IEEE Conf. Structure in Complexity Theory, 1988, to appear.
R. Ladner, M. Lynch, and A. Selman, A comparison of polynomial-time reducibilities, Theoret. Comput. Sci. 1 (1975), 103–123.
M. Li and P. Vitanyi, Two decades of applied Kolmogorov complexity, Proc. 3rd IEEE Conf. Structure in Complexity Theory, 1988, to appear.
T. Long, On restricting the size of oracles compared with restricting access to oracles, SIAM J. Comput. 14 (1985), 585–597.
T. Long and A. Selman, Relativizing complexity classes with sparse oracles, J. Assoc. Comput. Mach. 33 (1988), 618–627.
S. Mahaney, Sparse complete sets for NP: solution of a conjecture of Berman and Hartmanis, J. Comput. Syst. Sci. 23 (1982), 130–143.
N. Pippenger, On simultaneous resource bounds, Proc., 20th IEEE Symp. Foundations of Computer Science, 1979, 307–311.
U. Schöning, Complexity and Structure, LNCS 211, 1986.
U. Schöning, Complete sets and closeness to complexity classes, Math. Syst. Theory 19 (1986), 29–41.
U. Schöning, Probabilistic complexity classes and lowness, Proc. 2nd IEEE Conf. Structure in Complexity Theory 1987, 2–8.
M. Sipser, A complexity theory approach to randomness, Proc. 15th ACM Symp. Theory of Computing 1983, 330–335.
S. Tang and R. Book, Separating polynomial-time Turing and truth-table reducibilities by tally sets, Automata, Languages and Programming-88, LNCS, 1988, to appear.
S. Tang and R. Book, in preparation.
S. Tang and O. Watanabe, On tally relativizations of BP-complexity classes, Proc. 3rd IEEE Conf. Structure in Complexity Theory, 1988, to appear.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1988 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Book, R.V. (1988). Sparse sets, tally sets, and polynomial reducibilities. In: Chytil, M.P., Koubek, V., Janiga, L. (eds) Mathematical Foundations of Computer Science 1988. MFCS 1988. Lecture Notes in Computer Science, vol 324. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0017127
Download citation
DOI: https://doi.org/10.1007/BFb0017127
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-50110-7
Online ISBN: 978-3-540-45926-2
eBook Packages: Springer Book Archive