[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Sparse sets, tally sets, and polynomial reducibilities

  • Invited Lectures
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1988 (MFCS 1988)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 324))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Allender and R. Rubinstein, P-printable sets, SIAM J. Comput., to appear.

    Google Scholar 

  2. E. Allender and O. Watanabe, Kolmogorov complexity and degrees of tally sets, Proc. 3rd IEEE Conf. Structure in Complexity Theory, 1988, to appear.

    Google Scholar 

  3. K. Ambos-Spies, Randomness, relativizations and polynomial reducibilities, Proc. 1st Conf. Structure in Complexity Theory, LNCS 223, 1986, 23–34.

    Google Scholar 

  4. A. Amir and W. Gasarch, Polynomial terse sets, Proc. 2nd IEEE Conf. Structure in Complexity Theory, 1987, 22–27.

    Google Scholar 

  5. L. Babai, Trading group theory for randomness, Proc. 17th ACM Symp. Theory of Computing, 1985, 421–429.

    Google Scholar 

  6. J. Balcázar and R. Book, Sets with small generalized Kolmogorov complexity, Acta Informatica 23 (1986), 679–688.

    Google Scholar 

  7. J. Balcázar, R. Book, and U. Schöning, The polynomial-time hierarchy and sparse oracles, J. Assoc. Comput. Mach. 33 (1986), 603–617.

    Google Scholar 

  8. J. Balcázar, J. Díaz, and J. Gabarró, Structural Complexity I, Springer-Verlag, 1988.

    Google Scholar 

  9. R. Beigel, A structural theorem that depends quantitatively on the complexity of SAT, Proc. 2nd IEEE Conf. Structure in Complexity Theory, 1987, 28–32.

    Google Scholar 

  10. C. Bennett and J. Gill, Relative to a random oracle, P AN P A ≠ co − N P A with probability 1, SIAM J. Comput. 10 (1981), 96–113.

    Google Scholar 

  11. L. Berman and J. Hartmanis, On isomorphisms and density of NP and other complete sets, SIAM J. Comput. 6 (1977), 305–322.

    Google Scholar 

  12. P. Berman, Relationships between density and deterministic complexity of NP-complete languages, Automata, Languages and Programming — 78, LNCS 62, 1978, 63–71.

    Google Scholar 

  13. R. Book, Bounded query machines: on NP and PSPACE, Theoret. Comput. Sci. 15 (1981), 27–39.

    Google Scholar 

  14. R. Book and K. Ko, On sets truth-table reducible to sparse sets, SIAM J. Comput. 17 (1988), to appear. Also see Proc. 2nd IEEE Conf. Structure in Complexity Theory 1987, 147–155.

    Google Scholar 

  15. R. Book and C. Wrathall, Bounded query machines: on NP() and NPQUERY(), Theoret. Comput. Sci. 15 (1981), 41–50.

    Google Scholar 

  16. R. Book, P. Orponen, D. Russo, and O. Watanabe, Lowness properties in the exponent-time hierarcy, SIAM J. Comput. 17 (1988), to appear.

    Google Scholar 

  17. S. Fortune, A note on sparse complete sets, SIAM J. Comput. 8 (1979), 431–433.

    Google Scholar 

  18. S. Goldwasser and M. Sipser, Private coins in interactive proof systems, Proc. 18th ACM Symp. Theory of Computing 1986, 59–68.

    Google Scholar 

  19. J. Hartmanis, Generalized Kolmogorov complexity and the structure of feasible computations, Proc. 24th IEEE Symp. Foundations of Computer Science 1983, 439–445.

    Google Scholar 

  20. J. Hartmanis and L. Hemachandra, On sparse oracles separating feasible complexity classes, STACS-86, LNCS 210, 1986, 321–333.

    Google Scholar 

  21. R. Karp and R. Lipton, Some connections between nonuniform and uniform complexity classes, Proc. 12th ACM Symp. Theory of Computing 1980, 302–309.

    Google Scholar 

  22. K. Ko, Continuous optimization problems and a polynomial hierarchy of real functions, J. Complexity 1 (1985), 210–231.

    Google Scholar 

  23. K. Ko, On the notion of infinite pseudo random sequences, Theoret. Comput. Sci. 48 (1988), 9–33.

    Google Scholar 

  24. K. Ko, Distinguishing reducibilities by sparse sets, Proc. 3rd IEEE Conf. Structure in Complexity Theory, 1988, to appear.

    Google Scholar 

  25. R. Ladner, M. Lynch, and A. Selman, A comparison of polynomial-time reducibilities, Theoret. Comput. Sci. 1 (1975), 103–123.

    Google Scholar 

  26. M. Li and P. Vitanyi, Two decades of applied Kolmogorov complexity, Proc. 3rd IEEE Conf. Structure in Complexity Theory, 1988, to appear.

    Google Scholar 

  27. T. Long, On restricting the size of oracles compared with restricting access to oracles, SIAM J. Comput. 14 (1985), 585–597.

    Google Scholar 

  28. T. Long and A. Selman, Relativizing complexity classes with sparse oracles, J. Assoc. Comput. Mach. 33 (1988), 618–627.

    Google Scholar 

  29. S. Mahaney, Sparse complete sets for NP: solution of a conjecture of Berman and Hartmanis, J. Comput. Syst. Sci. 23 (1982), 130–143.

    Google Scholar 

  30. N. Pippenger, On simultaneous resource bounds, Proc., 20th IEEE Symp. Foundations of Computer Science, 1979, 307–311.

    Google Scholar 

  31. U. Schöning, Complexity and Structure, LNCS 211, 1986.

    Google Scholar 

  32. U. Schöning, Complete sets and closeness to complexity classes, Math. Syst. Theory 19 (1986), 29–41.

    Google Scholar 

  33. U. Schöning, Probabilistic complexity classes and lowness, Proc. 2nd IEEE Conf. Structure in Complexity Theory 1987, 2–8.

    Google Scholar 

  34. M. Sipser, A complexity theory approach to randomness, Proc. 15th ACM Symp. Theory of Computing 1983, 330–335.

    Google Scholar 

  35. S. Tang and R. Book, Separating polynomial-time Turing and truth-table reducibilities by tally sets, Automata, Languages and Programming-88, LNCS, 1988, to appear.

    Google Scholar 

  36. S. Tang and R. Book, in preparation.

    Google Scholar 

  37. S. Tang and O. Watanabe, On tally relativizations of BP-complexity classes, Proc. 3rd IEEE Conf. Structure in Complexity Theory, 1988, to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michal P. Chytil Václav Koubek Ladislav Janiga

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Book, R.V. (1988). Sparse sets, tally sets, and polynomial reducibilities. In: Chytil, M.P., Koubek, V., Janiga, L. (eds) Mathematical Foundations of Computer Science 1988. MFCS 1988. Lecture Notes in Computer Science, vol 324. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0017127

Download citation

  • DOI: https://doi.org/10.1007/BFb0017127

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50110-7

  • Online ISBN: 978-3-540-45926-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics