[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A framework for incorporating structural prior information into the estimation of medical images

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 687))

Abstract

I propose a Bayesian model for medical image analysis that permits prior structural information to be incorporated into the estimation of image features. Inclusion of prior information is accomplished using the image model described in [7]. A distinguishing feature of this model is the specification of a hierarchical structure for image generation that explicitly incorporates region parameters. Importantly, these region identifiers allow prior information to be incorporated in a nondeterministic fashion, thus permitting prior structural information to be modified by image data with minimal introduction of residual artifacts. Furthermore, the resulting statistical model permits formation of previously unidentified structures based on the observed data likelihood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amit, Y., Grenander, U. and Piccioni, M.: Structural Image Restoration Through Deformable Templates. Journal of the American Statistical Society, 86 (1991) 376–387.

    Google Scholar 

  2. Besag, J.E.: On the Statistical Analysis of Dirty Pictures. Journal of the Royal Statistical Society, Ser. B, 48 (1986) 259–302.

    Google Scholar 

  3. Geman, S. and Geman, D.: Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Trans. Pattern Anal. Machine Intell. 6 (1984) 721–741.

    Google Scholar 

  4. Geman, S. and McClure, D.E.: Statistical Methods for Tomographic Image Reconstruction. Proceedings of the 46th Session of the ISI (1987) Bulletin of the ISI 52.

    Google Scholar 

  5. Hebert, T. and Leahy, R.: A Generalized EM Algorithm for 3D Bayesian Reconstruction from Poisson Data Using Gibbs Priors. IEEE Transactions on Medical Imaging, 8 (1989) 194–202.

    Article  Google Scholar 

  6. Hoffman, E.H., Cutler, P.D., Digby, W.M., and Mazziotta, J.C.: 3D Phantom to Simulate Cerebral Blood Flow and Metabolic Images for PET. IEEE Transactions on Nuclear Science 37 (1990) 616–620.

    Article  Google Scholar 

  7. Johnson, V.E.: A Model for Segmentation and Analysis of Noisy Images. Invited revision for Journal of the American Statistical Association (1992).

    Google Scholar 

  8. Johnson, V.E., Wong, W.H., Hu, X., and Chen, C.T.: Bayesian Restoration of PET images using Gibbs Priors. XIth International Conference On Information Processing in Medical Imaging, Wiley-Liss, (1990) 15–28.

    Google Scholar 

  9. Johnson, V.E., Wong, W.H., Hu, X., and Chen, C.T.: Aspects of Image Restoration Using Gibbs Priors: Boundary Modeling, Treatment of Blurring, and Selection of Hyperparameters. IEEE Transactions on Pattern Analysis and Machine Intelligence 13 (1991) 412–425.

    Article  Google Scholar 

  10. Lange, K. and Carson, R.: EM Reconstruction Algorithms for Emission and Transmission Tomography. Journal of Computer Assisted Tomography 8 (1984) 306–318.

    PubMed  Google Scholar 

  11. Qian, J., Johnson, V.E., Bowsher, J.E., and Jaszczak, R.J.: A Deterministic Approach to the Posterior Distribution in a Bayesian Imaging Model. ISDS Discussion Paper, Duke University (1992).

    Google Scholar 

  12. Shepp, L. and Vardi, Y.: Maximum Likelihood Reconstruction for Emission Tomography. IEEE Transactions on Medical Imaging MI-1, (1982) 113–122.

    Google Scholar 

  13. Snyder, D. and Miller, M.: The Use of Sieves to Stabilize Images Produced with the EM Algorithm for Emission Tomography. IEEE Transactions on Nuclear Science NS-32, (1985) 3864–3870.

    Google Scholar 

  14. Vardi, Y., Shepp, L., and Kaufman, L.: A Statistical Model for Positron Emission Tomography. Journal of the American Statistical Association 80 (1985) 8–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Harrison H. Barrett A. F. Gmitro

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Johnson, V.E. (1993). A framework for incorporating structural prior information into the estimation of medical images. In: Barrett, H.H., Gmitro, A.F. (eds) Information Processing in Medical Imaging. IPMI 1993. Lecture Notes in Computer Science, vol 687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0013796

Download citation

  • DOI: https://doi.org/10.1007/BFb0013796

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56800-1

  • Online ISBN: 978-3-540-47742-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics