Abstract
If (Xn)(1),...,Xn(p)) is for n=1,2,..., an i.i.d. sequence, with Fn(x1,...,xp) as its empirical c.d.f. with margins F (j)n , 1⩽j⩽p, the empirical dependence function Dn is the c.d.f. of a probability distribution with uniform margins on [0,1]p, and such that Fn(x1,...,xp)=Dn(F (1)n (x1),...,F (p)n (xp)). We show in this paper that Dn(u1,...,up) is asymptotically normal for p⩾3 and show the weak convergence of n1/2(Dn(u1,...,up)−E(Dn(u1,...,up))) toward a limiting gaussian process of which we derive the covariance function in the independence case. These results extend the bivariate case studied in [3] and [5].
Some applications are given to tests of independence, including in particular Kendall’s τ and Spearman’s ρ. We give a tabulation of our test Tn(4), developed in [3], for n=11−30, extending the tabulation for n=3−10 obtained in [4].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
BLUM, J.R., KIEFER, J., ROSENBLATT, M., 1961, Distribution free tests of independence based on the sample distribution function, Ann. Math. Statist., 32, pp. 485–497.
BHUCHONGKUL, S., 1964, A class of non parametric tests for independence in bivariate populations, Ann.Math. Statist., 35, p. 138–149.
DEHEUVELS P., 1979, La fonction de dépendance empirique et ses propriétés, un test non-paramétrique d’indépendance, Acad. Royale de Belgique, Bulletin de la classe des sciences, 5e Sér., t. LXV, f.6, p. 274–292.
-, 1980, A non parametric test for independence, submitted to the Z. Wahrscheinlichkeit.
-, 1980, A Kolmogorov-Smirnov test for independence, to be published in Revue Roumaine de Math. Pures et appliquées.
-, 1980, Some applications of the dependence functions to statistical inference: non parametric estimates of extreme value distributions, and a Kiefer type universal bound for the uniform test of independence, to be published in Coll. Math. Janos Bolyai soc.
DUGUE, D., 1975, Sur des tests d’indépendance indépendants de la loi, C.R. Acad. Sci. Paris, t. 281, Ser. A, p. 1103–4.
DVORETZKY, A., KIEFER, J., WOLFOWITZ, J., 1956, Asymptotic minimax character of the classical multinomial operator, Ann. Math. Statist., 27, p. 642–669.
EVERITT, B.S., 1977, The analysis of contingency tables, Chapman & Hall.
HAJEK, J., SIDAK, Z., 1967, Theory of rank tests, Academic Press.
JAMES, B.R., 1975, A functional law of the iterated logarithm for weighted empirical distributions, Ann. Prob., 3, p. 762–772.
KENDALL, M., 1970, Rank correlation methods, 4th Edit., Griffin.
KIEFER, J., 1961, On large deviations of the empiric D.F. of vector chance variables and a law of the iterated logarithm, Pacific J. Math., 11, p. 649–660.
KONIJN, H.S., 1956, On the power of certain tests of independence in bivariate populations, Ann. Math. Statist., 27, p. 300–323.
KOZIOL, J.A., NEMEC, A., 1979, On a Cramer-von Mises type statistic for testing bivariate independence, La Revue Canadienne de Statistique, Vol. 7, no 1, p. 43–52.
PURI, M.L., SEN, P.K., 1970, Non parametric methods in multivariate analysis, Wiley.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1980 Springer-Verlag
About this paper
Cite this paper
Deheuvels, P. (1980). Non parametric tests of independence. In: Raoult, JP. (eds) Statistique non Paramétrique Asymptotique. Lecture Notes in Mathematics, vol 821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0097426
Download citation
DOI: https://doi.org/10.1007/BFb0097426
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-10239-7
Online ISBN: 978-3-540-38318-5
eBook Packages: Springer Book Archive