Abstract
The λ⇑-calculus is a confluent first-order term rewriting system which contains the λ-calculus written in de Bruijn's notation. The substitution is defined explicitly in λ⇑ by a subsystem, called the σ⇑-calculus. In this paper, we use the σ⇑-calculus as the substitution mechanism of general higher-order systems which we will name Explicit Reduction Systems. We give general conditions to define a confluent XRS. Particularly, we restrict the general condition of orthogonality of the classical higher-order rewriting systems to the orthogonality of the rules initiating substitutions.
Preview
Unable to display preview. Download preview PDF.
References
M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. In Principles of Programming Languages, pages 31–46, 1990.
A. Asperti and C. Laneve. Interaction systems 1: The theory of optimal reductions. Mathematical Structures in Computer Science, 4:457–504, 1994.
R. Bloo and K.H. Rose. Combinatory reduction systems with explicit substitution that preserve strong normalisation. In Rewriting Techniques and Applications, pages 169–183, 1996.
P.-L. Curien, T. Hardin, and J.-J. Lévy. Confluence properties of weak and strong calculi of explicit substitutions. Journal of the ACM, 43(2):362–397, March 1996.
P.-L. Curien. An abstract framework for environment machines. Theoretical Computer Science, 82, 1991.
G. Dowek, T. Hardin, and C. Kirchner. Higher-order unification via explicit substitutions. In Logic in Computer Science, 1995.
G. Dowek, T. Hardin, C. Kirchner, and F. Pfenning. Unification via explicit substitutions: the case of higher-order patterns. In Logic Programming, pages 259–273, 1996.
J. Goubault. Weak normalization of λσ-calculus. GDR-AMI, 1997.
T. Hardin and J.-J. Lévy. A confluent calculus of substitutions. In France-Japan Artificial Intelligence and Computer Science Symposium, 1989.
T. Hardin, L. Maranget, and B. Pagano. Functional back-ends within the lambda-sigma calculus. In International Conference on Functional Programming, pages 25–33, 1996.
D. Kesner. Confluence properties of extensional and non-extensional lambda-calculi with explicit substitutions. Lecture Notes in Computer Science, 1103:184–--, 1996.
Z.O. Khasidashvili. Expression reduction systems. In Proceedings of I. Vekua Institute of Applied Mathematics, volume 36, pages 200–220, 1990.
J.W. Klop. Combinatory Reduction Systems. PhD thesis, University of Amsterdam, 1980.
J.W. Klop. Term rewriting systems. Technical report, Centrum voor Wiskunde en Informatica, 1990.
F. Kamareddine and A. Rios. Generalized-reduction and explicit substitution. Lecture Notes in Computer Science, 1140:378–--, 1996.
P. Lescanne. From λσ to λυ: A journey through calculi of explicit substitutions. In Principles of Programming Languages, pages 60–69, 1994.
P.-A. Mellies. Typed lambda-calculi with explicit substitutions may not terminate. In Typed Lambda Calculi and Applications, 1995.
D. Miller. A logic programming language with lambda-abstraction, function variables, and simple unification. Journal of Logic and Computation, pages 497–536, 1991.
F. Müller. Confluence of the lambda calculus with left-linear algebraic rewriting. Information Processing Letters, 41:293–299, 1992.
C. Muñoz. Meta-theoretical properties of λ φ : A left-linear variant of λ σ . Technical Report RR-3107, Unité de recherche INRIA-Rocquencourt, Février 1997.
T. Nipkow. Higher-order critical pairs. In Proceedings of Logic in Computer Science, pages 342–349, 1993.
V. Oostrom and F. Raamsdonk. Weak orthogonality implies confluence: The higher-order case. Lecture Notes in Computer Science, 813:379–--, 1994.
A. Rios. Contributions à l'étude des Lambda-calculs avec Substitutions Explicites. PhD thesis, Université PARIS 7, 1993.
K. H. Rose and R. R. Moore. Xy-pic Reference Manual, 1995.
F. van Raamsdonk. Confluence and Normalization for Higher-Order Rewriting. PhD thesis, University of Amsterdam, 1996.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pagano, B. (1998). X.R.S: Explicit reduction systems — A first-order calculus for higher-order calculi. In: Kirchner, C., Kirchner, H. (eds) Automated Deduction — CADE-15. CADE 1998. Lecture Notes in Computer Science, vol 1421. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0054249
Download citation
DOI: https://doi.org/10.1007/BFb0054249
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64675-4
Online ISBN: 978-3-540-69110-5
eBook Packages: Springer Book Archive