[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

WDM transmissions exploiting optical phase conjugation

Les transmissions à multiplexage en longueur d’onde exploitant la conjugaison optique de phase

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Due to the frequency shift occurring in the process of optical phase conjugation (opc) generation, the application of opc in multiple-channel transmission is limited severely by the third-order dispersion. In this paper, taking into account the influence of the frequency shift and the compensation of nonlinear effects, we present an effective method to optimize the dispersion map for broad-band transmissions using optical phase conjugation. The numerical simulation results show that high efficiency wavelength-division-multiplexing (wdm) transmissions can be achieved by using the combination of opc with an optimized dispersion map.

Résumé

Le déplacement de fréquence provoqué par la génération d’une conjugaison optique de phase pourrait limiter l’application de celle-ci à la transmission multi-canaux à cause de la dispersion du 3e ordre. Une méthode plus efficace est proposée pour optimiser le diagramme de dispersion dans la transmission à large bande; cette méthode a pris en compte l’effet du déplacement de fréquence et la compensation des effets non linéaires. Une étude de simulation montre que la transmission par multiplexage en longueur d’onde pourrait être plus efficace si la conjugaison de phase était utilisée en association avec une optimisation du diagramme de dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yariv A., Fekete D., Pepper D. M., Compensation for channel dispersion by nonlinear optical phase conjugation, Opt. Lett., 4, no 2, pp. 52–54, Feb. 1979.

    Google Scholar 

  2. Breuer D., Kurtzke C., Petermann K., Upgrading the embedded standard-fiber network by opticalphase conjugation, IEEE Proc.-Optoelectron., 143, no 3, pp. 205–208, June 1996.

    Google Scholar 

  3. Lorattanasane C., Kicuchi K., Design theory of long-distance optical transmission systems using midway optical phase conjugation, J. Lightwave Technol, 15, no6, pp. 948–955, June 1997.

    Google Scholar 

  4. Jansen S. L., Spalter K., Khoe G., Wardt H., Escobar H., Marshall L., Sher M., 1640Gb/s over 800 km of ssmf using mid-link spectral inversion, IEEE Photon. Technol. Lett., 16, no 7, pp. 1763–1765, July 2004.

    Google Scholar 

  5. Chowdhury A., Essiambre R. J., Optical phase conjugation and pseudolinear transmission, Opt. Lett., 29, no 10, pp. 1105–1107, May 2004.

    Google Scholar 

  6. Chou M. H., Handen J., Arbore M. A., Fejer M. M., 1.5-Bm-Band Wavelength Conversion Based on Difference-Frequency Generation in LiNbO3 Waveguide with Integrated Coupling Structures, Opt. Lett., 23, no 13, pp. 1004–1006, July 1998.

    Google Scholar 

  7. Xu C. Q., Fujita K., Pratt A. R., Ogawa Y., Kamijou T., Optimization of 1.5-μm -Band LiNbO3 Quasi-phase Matched Wavelength Converters for Optical Communications System, IEEE Trans. Electron., E83-C, pp. 884–891, June 2000.

    Google Scholar 

  8. Inoue K., Four-Wave Mixing in An Optical Fiber in the Zero-Dispersion Wavelength Region, J. Lightwave Technology, 10, no 11, pp. 1553–1561, 1992.

    Google Scholar 

  9. Ramaswami R., Sivarajan K. N., Optical Networks: A Practical Perspective, San Francisco: Morgan Kaufman Publisher, 2002.

    Google Scholar 

  10. Tang X., Wu Z., Suppressing Modulation Instability in Midway Optical Phase Conjugation Systems by Using Dispersion Compensation, IEEE Photon. Technol Lett., 17, no 4, pp. 926–928, June, 2005.

    Google Scholar 

  11. Breuer D., Kuppers F., Mattheus A., Shapiro E. G., Gabitov I., Turisyn S. K., Symmetrical Dispersion Compensation for Standard Monomode-fiber-Based Communication Systems with Large Amplifier Spacing, Opt. Lett., 22, no 13, pp. 982–984, July 1997.

    Google Scholar 

  12. Tang X., Wu Z., Reduction of Intrachannel Nonlinearity Using Optical Phase Conjugation, IEEE Photon. Technol. Lett., 17, no 9, pp. 1863–1865, Sept. 2005.

    Google Scholar 

  13. Schneider T., Nonlinear Optics in Telecommunications. New York: Springer, 2004.

    Google Scholar 

  14. Agrawal G. P., Fiber-Optic Communication Systems. New York: John Wiley & Sons, 2002.

    Book  Google Scholar 

  15. Ono H., Yamada M., Kanamori T., Sudo S., Ohishi Y), 1.58-μm Band Gain-Flattened Erbium-Doped Fiber Amplifiers for wdm Transmission Systems, J. Lightwave Technology, 17, no 3, pp. 490–496, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuefeng Tang or Zongyan Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, X., Wu, Z. WDM transmissions exploiting optical phase conjugation. Ann. Telecommun. 62, 518–530 (2007). https://doi.org/10.1007/BF03253274

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03253274

Key words

Mots clés

Navigation