Abstract
Due to the frequency shift occurring in the process of optical phase conjugation (opc) generation, the application of opc in multiple-channel transmission is limited severely by the third-order dispersion. In this paper, taking into account the influence of the frequency shift and the compensation of nonlinear effects, we present an effective method to optimize the dispersion map for broad-band transmissions using optical phase conjugation. The numerical simulation results show that high efficiency wavelength-division-multiplexing (wdm) transmissions can be achieved by using the combination of opc with an optimized dispersion map.
Résumé
Le déplacement de fréquence provoqué par la génération d’une conjugaison optique de phase pourrait limiter l’application de celle-ci à la transmission multi-canaux à cause de la dispersion du 3e ordre. Une méthode plus efficace est proposée pour optimiser le diagramme de dispersion dans la transmission à large bande; cette méthode a pris en compte l’effet du déplacement de fréquence et la compensation des effets non linéaires. Une étude de simulation montre que la transmission par multiplexage en longueur d’onde pourrait être plus efficace si la conjugaison de phase était utilisée en association avec une optimisation du diagramme de dispersion.
Similar content being viewed by others
References
Yariv A., Fekete D., Pepper D. M., Compensation for channel dispersion by nonlinear optical phase conjugation, Opt. Lett., 4, no 2, pp. 52–54, Feb. 1979.
Breuer D., Kurtzke C., Petermann K., Upgrading the embedded standard-fiber network by opticalphase conjugation, IEEE Proc.-Optoelectron., 143, no 3, pp. 205–208, June 1996.
Lorattanasane C., Kicuchi K., Design theory of long-distance optical transmission systems using midway optical phase conjugation, J. Lightwave Technol, 15, no6, pp. 948–955, June 1997.
Jansen S. L., Spalter K., Khoe G., Wardt H., Escobar H., Marshall L., Sher M., 1640Gb/s over 800 km of ssmf using mid-link spectral inversion, IEEE Photon. Technol. Lett., 16, no 7, pp. 1763–1765, July 2004.
Chowdhury A., Essiambre R. J., Optical phase conjugation and pseudolinear transmission, Opt. Lett., 29, no 10, pp. 1105–1107, May 2004.
Chou M. H., Handen J., Arbore M. A., Fejer M. M., 1.5-Bm-Band Wavelength Conversion Based on Difference-Frequency Generation in LiNbO3 Waveguide with Integrated Coupling Structures, Opt. Lett., 23, no 13, pp. 1004–1006, July 1998.
Xu C. Q., Fujita K., Pratt A. R., Ogawa Y., Kamijou T., Optimization of 1.5-μm -Band LiNbO3 Quasi-phase Matched Wavelength Converters for Optical Communications System, IEEE Trans. Electron., E83-C, pp. 884–891, June 2000.
Inoue K., Four-Wave Mixing in An Optical Fiber in the Zero-Dispersion Wavelength Region, J. Lightwave Technology, 10, no 11, pp. 1553–1561, 1992.
Ramaswami R., Sivarajan K. N., Optical Networks: A Practical Perspective, San Francisco: Morgan Kaufman Publisher, 2002.
Tang X., Wu Z., Suppressing Modulation Instability in Midway Optical Phase Conjugation Systems by Using Dispersion Compensation, IEEE Photon. Technol Lett., 17, no 4, pp. 926–928, June, 2005.
Breuer D., Kuppers F., Mattheus A., Shapiro E. G., Gabitov I., Turisyn S. K., Symmetrical Dispersion Compensation for Standard Monomode-fiber-Based Communication Systems with Large Amplifier Spacing, Opt. Lett., 22, no 13, pp. 982–984, July 1997.
Tang X., Wu Z., Reduction of Intrachannel Nonlinearity Using Optical Phase Conjugation, IEEE Photon. Technol. Lett., 17, no 9, pp. 1863–1865, Sept. 2005.
Schneider T., Nonlinear Optics in Telecommunications. New York: Springer, 2004.
Agrawal G. P., Fiber-Optic Communication Systems. New York: John Wiley & Sons, 2002.
Ono H., Yamada M., Kanamori T., Sudo S., Ohishi Y), 1.58-μm Band Gain-Flattened Erbium-Doped Fiber Amplifiers for wdm Transmission Systems, J. Lightwave Technology, 17, no 3, pp. 490–496, 1999.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Tang, X., Wu, Z. WDM transmissions exploiting optical phase conjugation. Ann. Telecommun. 62, 518–530 (2007). https://doi.org/10.1007/BF03253274
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF03253274
Key words
- Optical communication
- Wavelength division multiplexing
- Light dispersion
- Non linear effect
- Optical phase conjugaison
- Optical fiber transmission
- Optimization
- Compensation
- Simulation