References
Bruce C. Berndt,Ramanujan’s Notebooks, Springer-Verlag, New York, Part I (1985), Part II (1989), Part III (1991), Part IV (1994), Part V(1998).
Bruce C. Berndt, Heng Huat Chan, and Liang-Cheng Zhang, Ramanujan’s class invariants and cubic continued fraction,Acta Arithmetica 73 (1995), 67–85.
Bruce C. Berndt, Heng Huat Chan, and Liang-Cheng Zhang, Ramanujan’s class invariants, Kronecker’s limit formula, and modular equations,Transactions of the American Mathematical Society 349 (1997), 2125–2173.
Bruce C. Berndt, Youn-Seo Choi, and Soon-Yi Kang, The problems submitted by Ramanujan to the Journal of the Indian Mathematical Society, inContinued Fractions: From Analytic Number Theory to Constructive Approximation, B. C. Berndt and F. Gesztesy, eds., Contemp. Math. No. 236, American Mathematical Society, Providence, Rl, 1999, pp. 15–56.
William S. Burnside and Arthur W. Panton,The Theory of Equations, 2 vols., Dover, New York, 1960.
Arthur Cayley, On a new auxiliary equation in the theory of equations of the fifth order,Philosophical Transactions of the Royal Society of London CLI (1861), 263–276. [15, Vol. IV, Paper 268, pp. 309-324.]
Arthur Cayley, Note on Mr. Jerrard’s researches on the equation of the fifth order,The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science XXI (1861), 210–214. [15, Vol. V, Paper 310, pp. 50-54.]
Arthur Cayley, On a theorem of Abel’s relating to equations of the fifth order,The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science XXI (1861),257–2633. [15, Vol. V, Paper 311, pp. 55-61.]
Arthur Cayley, Note on the solution of an equation of the fifth or- der,The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science XXIII (1862), pp. 195, 196. [15, Vol. V, Paper 316, p. 77.]
Arthur Cayley, Final remarks on Mr. Jerrard’s theory of equations of the fifth order,The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science XXIV (1862), 290. [15, Vol. V, Paper 321, p. 89.]
Arthur Cayley, Note on the solvability of equations by means of radicals,The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science XXXVI (1868), pp. 386, 387. [15, Vol. VII, Paper 421, pp. 13-14.]
Arthur Cayley, On a theorem of Abel’s relating to a quintic equation,Cambridge Philosophical Society Proceedings III (1880), 155–159. [15, Vol. XI, Paper 741, pp. 132-135.]
Arthur Cayley, A solvable case of the quintic equation,Quarterly Journal of Pure and Applied Mathematics XVIII (1882), 154–157. [15, Vol. XI, Paper 777, pp. 402-404.]
Arthur Cayley, On a soluble quintic equation,American Journal of Mathematics XIII (1891), 53–58. [15, Vol. XIII, Paper 914, pp. 88-92.]
Arthur Cayley,The Collected Mathematical Papers of Arthur Cayley, Cambridge University Press, Vol. I (1889), Vol. II (1889), Vol. III (1890), Vol. IV (1891), Vol. V (1892), Vol. VI (1893), Vol. VII (1894), Vol. VIII (1895), Vol. IX (1896), Vol. X (1896), Vol. XI (1896), Vol. XII (1897), Vol. XIII (1897), Vol. XIV (1898).
Heng Huat Chan, Ramanujan-Weber class invariantG nand Watson’s empirical process,Journal of the London Mathematical Society 57 (1998), 545–561.
James Cockle, Researches in the higher algebra,Memoirs of the Literary and Philosophical Society of Manchester XV (1858), 131–142.
James Cockle, Sketch of a theory of transcendental roots,The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science XX (1860), 145–148.
James Cockle, On the resolution of quintics,Quarterly Journal of Pure and Applied Mathematics 4 (1861), 5–7.
James Cockle, Notes on the higher algebra,Quarterly Journal of Pure and Applied Mathematics 4 (1861), 49–57.
James Cockle, On transcendental and algebraic solution-supplementary paper,The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science XXIII (1862), 135–139.
Winifred A. Cooke, George Neville Watson,Mathematical Gazette 49 (1965), 256–258.
David A. Cox,Primes of the Form x 2 + ny2, Wiley, New York, 1989.
David S. Dummit, Solving solvable quintics,Mathematics of Computation 57 (1991), 387–401.
David S. Dummit and Richard M. Foote,Abstract Algebra, Prentice Hall, New Jersey, 1991.
W. L. Ferrar,Higher Algebra, Oxford University Press, Oxford, 1950.
Joseph A. Gallian,Contemporary Abstract Algebra, Fourth Edition, Houghton Mifflin Co., Boston MA, 1998.
J. C. Glashan, Notes on the quintic,American Journal of Mathematics 7 (1885), 178–179.
Robert Harley, On the method of symmetric products, and its application to the finite algebraic solution of equations,Memoirs of the Literary and Philosophical Society of Manchester XV (1859), 172–219.
Robert Harley, On the theory of quintics,Quarterly Journal of Pure and Applied Mathematics 3 (1859), 343–359.
Robert Harley, On the theory of the transcendental solution of algebraic equations,Quarterly Journal of Pure and Applied Mathematics 5(1862), 337–361.
R. Bruce King,Beyond the Quartic Equation, Birkhäuser, Boston, 1996.
Sigeru Kobayashi and Hiroshi Nakagawa, Resolution of solvable quintic equation,Mathematica Japonicae 37 (1992), 883–886.
John Emory McClintock, On the resolution of equations of the fifth degree,American Journal of Mathematics 6 (1883-1884), 301- 315.
John Emory McClintock, Analysis of quintic equations,American Journal of Mathematics 8 (1885), 45–84.
John Emory McClintock, Further researches in the theory of quintic equations,American Journal of Mathematics 20 (1898), 157–192.
Srinivasa Ramanujan, Modular equations and approximations to π,Quarterly Journal of Mathematics 45 (1914), 350–372. [40: pp. 23-39.]
Srinivasa Ramanujan, Question 699,Journal of the Indian Mathematical Society 7 (1917), 199. [40: p. 331.]
Srinivasa Ramanujan,Notebooks, 2 vols., Tata Institute of Fundamental Research, Bombay, 1957.
Srinivasa Ramanujan,Collected Papers of Srinivasa Ramanujan, AMS Chelsea, Providence, Rl, 2000.
Robert A. Rankin, George Neville Watson,Journal of the London Mathematical Society 41 (1966), 551–565.
R. Russell, On modular equations,Proceedings of the London Mathematical Society 21 (1889-1890), 351–395.
Blair K. Spearman and Kenneth S. Williams, Characterization of solvable quintics x5 + ax + b,American Mathematical Monthly 101 (1994), 986–992.
Blair K. Spearman and Kenneth S. Williams, DeMoivre’s quintic and a theorem of Galois,Far East Journal of Mathematical Sciences 1 (1999), 137–143.
Blair K. Spearman and Kenneth S. Williams, Dihedral quintic polynomials and a theorem of Galois,Indian Journal of Pure and Applied Mathematics 30 (1999), 839–845.
Blair K. Spearman and Kenneth S. Williams, Conditions for the insolvability of the quintic equation x5 + ax + b = 0,Far East Journal of Mathematical Sciences 3 (2001), 209–225.
Blair K. Spearman and Kenneth S. Williams, Note on a paper of Kobayashi and Nakagawa,Scientiae Mathematicae Japonicae 53 (2001), 323–334.
K. L. Wardle, George Neville Watson,Mathematical Gazette 49 (1965), 253–256.
George N. Watson, Solution to Question 699,Journal of the Indian Mathematical Society 18 (1929-1930), 273–275.
George N. Watson, Theorems stated by Ramanujan (XIV): a singular modulus,Journal of the London Mathematical Society 6 (1931), 126–132.
George N. Watson, Some singular moduli (I),Quarterly Journal of Mathematics 3 (1932), 81–98.
George N. Watson, Some singular moduli (II),Quarterly Journal of Mathematics 3 (1932), 189–212.
George N. Watson, Singular moduli (3),Proceedings of the London Mathematical Society 40 (1936), 83–142.
George N. Watson, Singular moduli (4),Acta Arithmetica 1 (1936), 284–323.
George N. Watson, Singular moduli (5),Proceedings of the London Mathematical Society 42 (1937), 377–397.
George N. Watson, Singular moduli (6),Proceedings of the London Mathematical Society 42 (1937), 398–409.
Heinrich Weber,Lehrbuch der Algebra, 3 vols., Chelsea, New York, 1961.
George P. Young, Resolution of solvable equations of the fifth degree,American Journal of Mathematics 6 (1883-1884), 103–114.
George P. Young, Solution of solvable irreducible quintic equations, without the aid of a resolvent sextic,American Journal of Mathematics 7 (1885), 170–177.
George P. Young, Solvable quintic equations with commensurable coefficients,American Journal of Mathematics 10 (1888), 99–130.
Liang-Cheng Zhang, Ramanujan’s class invariants, Kronecker’s limit formula and modular equations (II), inAnalytic Number Theory: Proceedings of a Conference in Honor of Heini Halberstam, Vol. 2, B. C. Berndt, H. G. Diamond and A. J. Hildebrand, eds., Birkhäuser, Boston, 1996, pp. 817–838.
Liang-Cheng Zhang, Ramanujan’s class invariants, Kronecker’s limit formula and modular equations (III),Acta Arithmetica 82 (1997), 379–392.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Berndt, B.C., Spearman, B.K. & Williams, K.S. Commentary on an unpublished lecture by G. N. Watson on solving the quintic. The Mathematical Intelligencer 24, 15–33 (2002). https://doi.org/10.1007/BF03025320
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF03025320