[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Odd factors of a graph

  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

LetG be a graph and letf be a function defined on V(G) such that f(x) is a positive odd integer for everyx ɛ V(G). A spanning subgraphF ofG is called a [l,f]-odd factor of G if dF(x) ɛ {1,3,2026, f(x)} for every x ɛV(G), whered F (x) denotes the degree of x inF. We discuss several conditions for a graphG to have a [1,f]-odd factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akiyama, J., Kano, M.: Factors and factorizations of graphs — a survey. J. Graph Theory9, 1–42 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amahashi, A.: On factors with all degrees odd. Graphs Comb.1, 111–114 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beineke, L.W., Plummer, M.D.: On the 1-factors of a nonseparable graph. J. Comb. Theory2, 285–289 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chartrand, G., Polimeni, A.D., Stewart, M.J.: The existence of 1-factors in line graphs, squares, and total graphs. Indag. Math.35, 228–232 (1973)

    MathSciNet  Google Scholar 

  5. Chungphaisan, V.: Factors of graphs and degree sequences. Nanta Math.9, 41–49 (1976)

    MATH  MathSciNet  Google Scholar 

  6. Clarke, F.H.: A graph polynomial and its applications. Discrete Math.3, 305–313 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  7. Jackson, B., Whitty, R.W.: A note concerning graphs with unique f-factors. J. Graph Theory13, 577–580 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kotzig, A.: On the theory of finite graphs with a linear factor I, II, III. Mat. Fyz. Cas.9, 73–91 (1959)

    MATH  Google Scholar 

  9. Las Vergnas, M.: A note on matchings in graphs. Cahiers Centre Études Rech. Opér.17, 257–260 (1975)

    MATH  MathSciNet  Google Scholar 

  10. Sumner, D.P.: Graphs with 1-factors. Proc. Amer. Math. Soc.42, 8–17 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  11. Sumner, D.P.: 1-factors and antifactor sets. J. London Math. Soc.13, 351–359 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  12. Tutte, W.T.: The factorizations of linear graphs. J. London Math. Soc.22, 107–111 (1947)

    Article  MATH  MathSciNet  Google Scholar 

  13. Tutte, W.T.: Graph factors. Combinatorica1, 79–97 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  14. Yuting, C., Kano, M.: Some results on odd factors of graphs. J. Graph Theory12, 327–333 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Topp, J., Vestergaard, P.D. Odd factors of a graph. Graphs and Combinatorics 9, 371–381 (1993). https://doi.org/10.1007/BF02988324

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02988324

Keywords

Navigation