[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Some recent developments in deterministic global optimization

  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

During the last four decades there has been a remarkable development in global optimization. Due to its wide variety of applications, many scientists and researchers have paid attention to global optimization. A huge number of new theoretical, algorithmic and computational results have been observed. Global Optimization plays a central role in many sciences including economics, engineering, physics, computer science and so on. However, global optimization problems are quite difficult to solve, as they are usually NP-hard. In this paper, we present a survey of the theory and deterministic methods for global optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strekalovsky, A.S. (1998). Global Optimality Conditions for Nonconvex Optimization, Journal of Global Optimization vol. 12, 415–434.

    Article  Google Scholar 

  2. Strekalovsky, A.S. and Enkhbat, R. (1990). Global Maximum of Convex Functions on an Arbitrary Set, Dep.in VINITI, Irkutsk, vol. 1063, 1–27.

    Google Scholar 

  3. Bertsekas, D.P. (1995). Nonlinear programming, Athena Scientific, Belmont, Mass.

    Google Scholar 

  4. Du, D.Z. and Pardalos, P.M. (1997). Global Minimax Approaches for Solving Discrete Problems, Lecture Notes in Economics and mathematical Systems vol 452, Springer-Verlag, 34–48

  5. Du, D.Z. and Pardalos, P.M. (eds.) (1997). Satisfiability Problem: Theory and Applications, DIMACS Series vol. 35, American Mathematical Society.

  6. Lawler, E.L. (1975). The Quadratic Assignment Problem: A Brief Review, in Combinatorial Programming: Methods and Applications, (Roy, B. ed), Dordrecht, Holland, 351–360.

  7. Bazan, F.F. (1997). On Minima of the Difference of Functions, Journal of Optimization Theory and Applications vol. 93, 525–531.

    Article  Google Scholar 

  8. Giannessi, F. and Niccolucci, F. (1976). Connection Between Nonlinear and Integer Programming Problems, Symposia Mathematica (Institute Nazionale di Alta Mathematica) vol. 19, 161–17.

    Google Scholar 

  9. Dietrich, H. (1994). Global Optimization Conditions for Certain Nonconvex Minimization Problems, Journal of Global Optimization vol. 5, 359–370.

    Article  Google Scholar 

  10. Huang, H.X. and Pardalos, P.M. (2002). Multivariate Partition Approach for Optimization Problems, Cybernetics and Systems Analysis vol. 38, 265–275.

    Article  Google Scholar 

  11. Huang, H.X., Pardalos, P.M. and Shen, Z.J. (2002). Equivalent formulations and necessary optimality conditions for the Lenard-Jones problem, Journal of Global Optimization vol. 22, 97–118.

    Article  Google Scholar 

  12. Huang, H.X., Pardalos P.M. and Shen, Z.J. (2001). A point balance algorithm for the spherical code problem, Journal of Global Optimization vol. 19, 329–344.

    Article  Google Scholar 

  13. Huang, H.X, Liang, Z.A. and Pardalos, P.M. (2003). Some properties for the Euclidean Distance Matrix and Positive Semidefinite Matrix Completion Problem, Journal of Global Optimization vol. 25, 3–21.

    Article  Google Scholar 

  14. Tuy, H. (1991). Normal Conical Algorithm for Concave Minimization over Polytopes, Mathematical Programming vol. 51, 229–245.

    Article  Google Scholar 

  15. Tuy, H. (1964). Concave Programming Under Linear Constraints, Soviet Mathematics vol. 5, 1437–1440.

    Google Scholar 

  16. Singer, I. (1979). A Fenchel-Rockafellar Type Duality Theorem for Maximization, Bulletin of the Australian Mathematical Society vol. 20, 1993–198.

    Google Scholar 

  17. Hiriart-Urruty, J.-B. (1998). Conditions for Global Optimality 2, Journal of Global Optimization vol. 13, 349–367.

    Article  Google Scholar 

  18. Mitchell, J., Pardalos, P.M. and Resende M.G.C. (1998). Interior Point Methods for Combinatorial Optimization, In Handbook of Combinatorial Optimization vol. 1, 189–298

    Google Scholar 

  19. Toland, J.F. (1978). Duality in Nonlinear Optimization, Journal of Mathematical Analysis and Applications vol. 66, 399–415.

    Article  Google Scholar 

  20. Murty, K.G. (1968). Solving the Fixed Charge Problem by Ranking the Extreme Points, Operations Research vol. 16, 268–279.

    Google Scholar 

  21. Dur, M., Horst, R. and Locatelli, M. (1998). Necessary and Sufficient Global Optimality Conditions for Convex Maximization Revisited, Journal of mathematical Analysis and Applications vol 217, 637–649.

    Article  Google Scholar 

  22. Kojima, M. and Tuncel, L. (2002). Some Fundamental Properties of Successive Convex Relaxation Methods on LCP and Related Problems, Journal of Global Optimization vol. 24, 333–348.

    Article  Google Scholar 

  23. Thoai, N.V. and Tuy, H. (1980). Convergent Algorithms for Minimizing a Concave Function, Mathematics of Operations Ressearch vol. 5, 556–566.

    Article  Google Scholar 

  24. McKeown, P. (1975). A Vertex Ranking Procedure for Solving the Linear Fixed Charge Problem, Operations Research 23, 1182–1191.

    Google Scholar 

  25. Pardalos, P.M. (1996). Continuous Approaches to Discrete Optimization Problems, in Nonlinear Optimization and Applications (Di Pillo, G. and Giannessi, F. eds.), Plenum, 313–328.

  26. Pardalos, P.M. (1993). Complexity in Numerical Optimization, World Scientific Publishing, River Edge, New Jersey.

    Google Scholar 

  27. Pardalos, P. M. and Phillips, A. T. (1990). A global optimization approach for solving the maximum clique problem, International Journal of Computer Mathematics vol. 33, 209–216

    Article  Google Scholar 

  28. Pardalos, P.M., Rendl, F. and Wolkowicz, H. (1994). A Survey and Recent Developments, in Proceedings of the DIMACS Workshop on Quadratic Assignment Problems (Pardalos, P.M. and Wolkowicz, H eds.), DIMACS Series in Discrete Mathematics and Theoretical Computer Science vol. 16, 1–42.

  29. Pardalos, P.M. and Romeijn, H.E. (eds.) (1995), Handbook of Global Optimization vol 2, Kluwer Academic, Dordrecht.

    Google Scholar 

  30. Pardalos, P.M. and Wolkowicz, H. (1998). Topics in Semidefmite and Interior-Point Methods, American Mathematical Society.

  31. Pardalos, P.M. and Rosen, J.B. (1988). Global Optimiztion Approach to the Linear Complementarity Problem, SIAM Journal of Scientific and Statistical Computing vol. 9, 341–353.

    Article  Google Scholar 

  32. Pardalos, P.M. and Rosen, J.B. (1987). Constrained Global Optimization: Algorithms and Applications, Springer-Verlag, Lecture Notes in Computer Science.

  33. Pardalos, P.M. and Rosen, J.B. (1986). Methods for Global Concave Minimization: A Bibliographic Survey, SIAM Review vol. 28, 367–379.

    Article  Google Scholar 

  34. Pardalos, P.M. and Resende, M.G. (eds.) (2002), Handbook of Applied Optimization, {⩼ Oxford University Press, New York.

    Google Scholar 

  35. Pardalos, P.M. and Li, Y. (1993). Integer Programming, in Handbook of Statistics, Volume 9 (Rao, C.A. ed.), Elsevier Science Publishers, New York, 279–302.

    Google Scholar 

  36. Thach, P.T. (1994). A nonconvex duality with zero gap and applications, SIAM Journal on Optimization vol. 4, 44–64.

    Article  Google Scholar 

  37. Cottle, R.W., Pang, J.S. and Stone, R.E. (1992). Linear Complementarity Problem, Academic Press, New York.

    Google Scholar 

  38. Garfinkel, R.S. and Nemhauser, G.L. (1972). Integer Programming, John Wiley and Sons, New York.

    Google Scholar 

  39. Horst, R. and Tuy, H. (1993). Global Optimization: Deterministic Approaches, Springer Verlag, Heidelberg, second edition.

    Google Scholar 

  40. Horst, R. and Pardalos, P.M. (eds.) (1995). Handbook of Global Optimization, Kluwer Academic, Dordrecht.

    Google Scholar 

  41. Horst, R., Pardalos, P.M. and Thoai, N.V. (2001). Introduction to Global Optimization, Kluwer Academic, Netherlands, second edition.

    Google Scholar 

  42. Rockafellar, R.T. (1970). Convex Analysis, Princeton University Press, Princeton.

    Google Scholar 

  43. Koopmans, T.C. and Beckmann, M.J. (1957). Assignment Problems and the Location of Economic Activities, Econometrica vol. 25, 53–76.

    Article  Google Scholar 

  44. Motzkin, T.S. and Strauss, E.G. (1965). Maxima for Graphs and a New Proof of a Theorem of Turan, Canadian Journal of Mathematics vol. 17, 533–540.

    Google Scholar 

  45. Thieu, T.V. (1980). Relationship between Bilinear Programming and Concave Minimization under Linear Constraints, Acta Mathematica Vietnamica vol. 5, 106–113.

    Google Scholar 

  46. Hager, W.W., Pardalos, P.M., Roussos, I.M. and Sahinoglou, H.D. (1991). Active Constraints, Indefinite Quadratic Test Problems, and Complexity, Journal of Optimization Theory and Applications vol. 68, 499–511.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pardalos, P.M., Chinchuluun, A. Some recent developments in deterministic global optimization. Oper Res Int J 4, 3–28 (2004). https://doi.org/10.1007/BF02941093

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02941093

Keywords

Navigation