[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Interactive effects of light and salinity stress on the growth, reproduction, and photosynthetic capabilities ofVallisneria americana (wild celery)

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

The effects of light and salinity onVallisneria americana (wild celery) were studied in outdoor mesocosms for an entire growing season. Morphology, production, photosynthesis, and reproductive output were monitored from sprouting of winter buds to plant senescence and subsequent winter bud formation under four salinity (0, 5, 10, and 15 psu) and three light (2%, 8%, and 28% of surface irradiance) regines. Chlorophylla fluorescence was used to examine photochemical efficiency and relative electron transport rate. High salinity and low light each stunted plant growth and reproduction. Production (biomass, rosette production, and leaf area index) was affected more by salinity than by light, apparently because of morphological plasticity (increased leaf length and width), increased photosynthetic efficiency, and increased chlorophyll concentrations under low light. Relative maximum electron transport rate (ETRmax) was highest in the 28% light treatment, indicating increased photosynthetic capacity. ETRmax was not related to salinity, suggesting that the detrimental effects of salinity on production were through decreased photochemical efficiency and not decreased photosynthetic capacity. Light and salinity effects were interactive for measures of production, with negative salinity effects most apparent under high light conditions, and light effects found primarily at low salinity levels. For most production and morphology parameters, high light ameliorated salinity stress to a limited degree, but only between the 0 and 5 psu regimes. Growth was generally minimal in all of the 10 and 15 psu treatments, regardless of light level. Growth was also greatly reduced at 2% and 8% light. Flowering and winter bud production were impaired at 10 and 15 psu and at 2% and 8% light. Light requirements at 5 psu may be approximately 50% higher than at 0 psu. Because of the interaction between salinity and light requirements for growth, effective management of SAV requires that growth requirements incorporate the effects of combined stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Asch, F., M. Dingkuhn, andK. Dorffling. 2000. Salinity increases CO2 assimilation but reduces growth in field-grown, irrigated rice.Plant and Soil 218:1–10.

    Article  CAS  Google Scholar 

  • Barko, J. W., D. G. Hardin, andM. S. Matthews. 1982. Growth and morphology of submersed freshwater macrophytes in relation to light and temperature.Canadian Journal of Botany 60: 877–887.

    Article  Google Scholar 

  • Barko, J. W. andR. M. Smart. 1981. Comparative influences of light and temperature on the growth and metabolism of selected submersed freshwater macrophytes.Ecological Monographs 51:219–235.

    Article  Google Scholar 

  • Barko, J. W., R. M. Smart, andD. G. McFarland. 1991. Interactive effects of environmental conditions on the growth of submersed aquatic macrophytes.Journal of Freshwater Ecology 6: 199–207.

    Google Scholar 

  • Batiuk, R. A., P. Bergstrom, M. Kemp, E. Koch, L. Murray, J. C. Stevenson, R. Bartleson, V. Carter, N. B. Rybicki, C. Gallegos, L. Karrh, M. Naylor, D. Wilcox, K. Moore, S. Ailstock, andM. Teichberg. 2000. Chesapeake Bay submerged aquatic vegetation water quality and habitat-based requirements and restoration targets: A second technical synthesis. U.S. Environmental Protection Agency, Chesapeake Bay Program, Annapolis, Maryland.

    Google Scholar 

  • Batiuk, R. A., R. J. Orth, K. A. Moore, W. C. Dennison, J. C. Stevenson, L. Staver, V. Carter, N. Rybicki, R. E. Hickman, S. Kollar, S. Bieber, P. Heasly, andP. Bergstrom. 1992. Chesapeake Bay submerged aquatic vegetation habitat requirements and restoration targets: A technical synthesis. CBP/TRS 83/92. U.S. Environmental Protection. Agency, Chesapeake Bay Program, Annapolis, Maryland.

    Google Scholar 

  • Bayley, S., V. D. Stotts, P. F. Springer, andJ. Steenis. 1978. Changes in submerged aquatic macrophyte populations at the head of the Chesapeake Bay, 1958–1974.Estuaries 1:171–182.

    Article  Google Scholar 

  • Beer, S. andM. Bjork. 2000. Measuring rates of photosynthesis of two tropical seagrasses by pulse amplitude modulated (PAM) fluorometry.Aquatic Botany 66:69–76.

    Article  CAS  Google Scholar 

  • Beer, S. andM. Ilan. 1998. In situ measurements of photosynthetic irradiance responses of two Red Sea sponges growing under dim light conditions.Marine Biology 131:613–617.

    Article  Google Scholar 

  • Beer, S., M. Ilan, A. Eshel, A. Weil, andI. Brickner. 1998. Use of pulse amplitude modulated (PAM) fluorometry for in situ measurements of photosynthesis in two Red Sea faviid corals.Marine Biology 131:607–612.

    Article  Google Scholar 

  • Beer, S., C. Larsson, O. Poryan, andL. Axelsson. 2000. Photosynthetic rates ofUlva (Chlorophyta) meaaured by pulse amplitude modulated (PAM) fluorometry.European Journal of Phycology 35:69–74.

    Article  Google Scholar 

  • Blanch, S. J., G. G. Ganf, andK. F. Walker. 1998. Growth and recruitment inWallisneria Americana as related to average irradiance in the water column.Aquatic Botany 61:181–205.

    Article  Google Scholar 

  • Bourn, W. S. 1932. Ecological and physiological studies on certain aquatic angiosperms.Contributions from Boyce Thompson Institute 4:425–496.

    Google Scholar 

  • Bourn, W. S. 1934. Sea-water tolerance ofVallisneria spiralis L. andPotamogeton foliosus Raf.Contributions from Boyce Thompson Institute 6:303–308.

    Google Scholar 

  • Carter, V., N. B. Rybicki, J. M. Landwehr, andM. Naylor. 2000. Light requirements for SAV survival and growth, p. 11–33.In Chesapeake Bay SAV Water Quality and Habitat-based Requirements and Restoration Targets: A Second Technical Synthesis. U.S. Environmental Protection Agency, Chesapeake Bay Program, Annapolis, Maryland.

    Google Scholar 

  • Carter, V., N. B. Rybicki, andM. Turtora. 1996. Effect of increasing photon irradiance on the growth ofVallisneria americana in the tidal Potomac River.Aquatic Botany 54:337–345.

    Article  Google Scholar 

  • Champ, M. A., G. A. Gould, III,W. E. Bozzo, S. G. Ackleson, andK.C. Vierra. 1980. Characterization of light extinction and attenuation in Chesapeake Bay, August 1977, p. 263–277.In V. S. Kennedy (ed.), Estuarine Perspectives. Academic Press, New York.

    Google Scholar 

  • Davis, G. J. and M. M. Brinson. 1976. The submersed macrophytes of the Pamlico River estuary, North Carolina. University of North Carolina, Water Resources Research Institute Report No. 112. Raleigh, North Carolina.

  • Dennison, W. C. 1990. Chlorophyll content, p. 83–86.In R. C. Phillips and C. P. McRoy (eds.), Seagrass Research Methods. UNESCO, Paris, France.

    Google Scholar 

  • Doering, P. H., R. H. Chamberlain, andJ. M. McMunigal. 2001. Effects of simulated saltwater intrusions on the growth and survival of wild celery,Vallisneria americana, from the Caloosahatchee estuary (South Florida).Estuaries 24:894–903.

    Article  Google Scholar 

  • Dring, M. J. 1986. The Biology of Marine Plants. Edward Arnold, London, U.K.

    Google Scholar 

  • Dunton, K. H. 1996. Photosynthetic production and biomass of the subtropical seagrassHalodule wrightii along an estuarine gradient.Estuaries 19:436–447.

    Article  CAS  Google Scholar 

  • Goodman, J. L., K. A. Moore, andW. C. Dennison. 1995. Photosynthetic reponses of eelgrass (Zostera marina L.) to light and sediment sulfide in a shallow barrier island lagoon.Aquatic Botany 50:37–47.

    Article  Google Scholar 

  • Hale, M. G. andD. M. Orcutt. 1987. The Physiology of Plants Under Stress. John Wiley and Sons, Inc., New York.

    Google Scholar 

  • Haller, W. T., D. L. Sutton, andW. C. Barlowe. 1974. Effects of salinity on growth of several aquatic macrophytes.Ecology 55:891–894.

    Article  Google Scholar 

  • Haramis, G. M. andV. Carter. 1983. Distribution of submersed aquatic macrophytes in the tidal Potomac River.Aquatic Botany 15:65–79.

    Article  Google Scholar 

  • Havaux, M. 1992. Stress tolerance of photosystem II in vivo.Plant Physiology 100:424–432.

    Article  CAS  Google Scholar 

  • Hopkinson, Jr.,C. S., A. E. Giblin, J. Tucker, andR. H. Garritt. 1999. Benthic metabolism and nutrient cycling along an estuarine salinity gradient.Estuaries 22:863–881.

    Article  CAS  Google Scholar 

  • Kamermans, P., M. A. Hemminga, andD. J. Jong. 1999. Significance of salinity and silicon levels for growth of a formerly estuarine eelgrass (Zostera marina) population (Lake Grevelingen, The Netherlands)Marine Biology 133:527–539.

    Article  CAS  Google Scholar 

  • Kemp, W. M., R. R. Twilley, J. C. Stevenson, W. R. Boynton, andJ. C. Means. 1983. The decline of submerged vascular plants in upper Chesapeake Bay: Summary of results concerning possible causes.Marine Technology Society Journal 17: 78–89.

    Google Scholar 

  • Kerr, E. A. andS. Strother. 1985. Effects of irradiance, temperature and salinity on photosynthesis ofZostera muelleri.Aquatic Botany 23:177–184.

    Article  Google Scholar 

  • Kimber, A., C. E. Korschgen, andA. G. Van Der Valk. 1995. The distribution ofVallisneria americana seeds and seedling light requirements in the Upper Mississippi River.Canadian Journal of Botany 73:1966–1973.

    Article  Google Scholar 

  • Kirk J. T. O. 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Koch, E. W. 2001. Beyond light: Physical, geological and geochemical parameters as possible submersed aquatic vegetation habitat requirements.Estuaries 24:1–17.

    Article  Google Scholar 

  • Koroleva, O. Y., W. Bruggemann, andG. H. Krause. 1994. Photoinhibition, xanthophyll cycle and in vivo chlorophyll fluorescence quenching of chilling-tolerantOxyria digyna and chilling sensitiveZea mays.Physiologia Plantarum 92:577–584.

    Article  CAS  Google Scholar 

  • Korschgen, C. E. andW. L. Green. 1989. American wild celery (Vallisneria americana): Ecological considerations for restoration work. Fish and Wildlife technical report. U.S. Fish and Wildlife Service, Washington, D.C.

    Google Scholar 

  • Korschgen, C. E., W. L. Green, andK. P. Kenow. 1997. Effects of irradiance on growth and winter bud production byVallisneria americana and consequences to its abundance and distribution.Aquatic Botany 58:1–9.

    Article  Google Scholar 

  • Kraemer, G. P., R. H. Chamberlain, P. H. Doering, A. D. Steinman, andM. D. Hanisak. 1999. Physiological responses of transplants of the freshwater angiospermVallisneria americana along a salinity gradient in the Caloosahatchee estuary (southwestern Florida).Estuaries 22:138–148.

    Article  CAS  Google Scholar 

  • Kromkamp, J., C. Barranguet, andJ. Peene. 1998. Determination of micophytobenthos PSII quantum efficiency and photosynthetic activity by means of variable chlorophyll fluorescence.Marine Ecology Progress Series 162:45–55.

    Article  CAS  Google Scholar 

  • Lazar, A. C. andC. J. Dawes. 1991. A seasonal study of the seagrassRuppia maritima L. in Tampa Bay, Florida. Organic constituents and tolerances to salinity and temperature.Botanica Marina 34:265–269.

    Article  CAS  Google Scholar 

  • Lowden, R. M. 1982. An approach to the taxonomy ofVallisneria L. (Hydrocharitaceae).Aquatic Botany 13:269–298.

    Article  Google Scholar 

  • Masini, R. J., J. L. Cary, C. J. Simpson, andA. J. McComb. 1995. Effects of light and temperature on the photosynthesis of temperate meadow-forming seagrasses in Western Australia.Aquatic Botany 49:239–254.

    Article  Google Scholar 

  • Masini, R. J. andC. R. Manning. 1997. The photosynthetic responses to irradiance and temperature of four meadow-forming seagrasses.Aquatic Botany 58:21–36.

    Article  CAS  Google Scholar 

  • Maxwell, K. andG. N. Johnson. 2000. Chlorophyll fluorescence—A practical guide.Journal of Exprimental Botany 51: 659–668.

    Article  CAS  Google Scholar 

  • Meyer, B. S., F. H. Bell, L. C. Thompson, andE. I. Clay. 1943. Effect of depth of immersion on apparent photosynthesis in submersed vascular aquatics.Ecology 24:393–399.

    Article  Google Scholar 

  • Moore, K. A., H. A. Neckles, andR. J. Orth. 1996.Zostera marina (eelgrass) growth and survival along a gradient of nutrients and turbidity in the lower Chesapeake Bay.Marine Ecology Progress Series 142:247–259.

    Article  Google Scholar 

  • Moore, K. A., R. L. Wetzel, andR. J. Orth. 1997. Seasonal pulses of turbidity and their relations to eelgrass (Zostera marina L.) survival in an estuary.Journal of Experimental Marine Biology and Ecology 215:115–134.

    Article  Google Scholar 

  • Moore, K. A., D. J. Wilcox, andR. J. Orth 2000. Analysis of abundance of submersed aquatic vegetation communities in the Chesapeake Bay.Estuaries 23:115–127.

    Article  Google Scholar 

  • Morlock, S., D. Taylor, A. Giblin, C. Hopkinson, andJ. Tucker. 1997. Effect of salinity on the fate of inorganic nitrogen in sediments of the Parker River estuary, Massachusetts.Biological Bulletin 193:290–292.

    CAS  Google Scholar 

  • Orth, R. J. andK. A. Moore. 1983. Chesapeake Bay: An unprecedented decline in submerged aquatic vegetation.Science 222:51–53.

    Article  Google Scholar 

  • Orth, R. J. andK. A. Moore. 1984. Distribution and abundance of submerged aquatic vegetation in Chesapeake Bay: A historical perspective.Estuaries 7:531–540.

    Article  Google Scholar 

  • Parsons, T. R., Y. Maita, andC. M. Lalli. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, New York.

    Google Scholar 

  • Perez, M. andJ. Romero. 1992. Photosynthetic response to light and temperature of the seagrassCymodocea nodosa and the prediction of its seasonality.Aquatic Botany 43:51–62.

    Article  Google Scholar 

  • Ralph, P. J. 1998. Photosynthetic response ofHalophila ovalis (R. Br.) Hook. f. to osmotic stress.Journal of Experimental and Marine Biology and Ecology 227:203–220.

    Article  CAS  Google Scholar 

  • Ralph, P. J. 1999a. Photosynthetic response ofHalophila ovalis (R. Br.) Hook. f. to combined environmental stress.Aquatic Botany 65:83–86.

    Article  Google Scholar 

  • Ralph, P. J. 1990b. Light-induced photoinhibitory stress responses of laboratory-culturedHalophila ovalis.Botanica Marina 42:11–22.

    Article  Google Scholar 

  • Ralph, P. J. andM. D. Burchett. 1995. Photosynthetic responses of the seagrassHalophila ovalis (R. Br.) Hook. f. to high irradiance stress, using chlorophylla fluorescence.Aquatic Botany 51:55–66.

    Article  CAS  Google Scholar 

  • Ralph, P. J. andM. D. Burchett. 1998. Impact of petrochemicals on the photosynthesis ofHalophila ovalis using chlorophyll fluorescence.Marine Pollution Bulletin 36:429–436.

    Article  CAS  Google Scholar 

  • Romero-Aranda, R., T. Soria, andJ. Cuartero. 2001. Tomato plant-water uptake and plant-water relationships under saline growth conditions.Plant Science 160:265–272.

    Article  CAS  Google Scholar 

  • Rout, N. P. andB. P. Shaw. 2001. Salt tolerance in aquatic macrophytes: Possible involvement of the antioxidative enzymes.Plant Science 160:415–423.

    Article  CAS  Google Scholar 

  • Schreiber, U., W. Bilger, andC. Neubauer. 1994. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis.Ecological Studies: Analysis and Synthesis 100:49–70.

    CAS  Google Scholar 

  • Spencer, D. F., G. G. Ksander J. D. Madsen, andC. S. Owens. 2000. Emergence of vegetative propagules ofPotamogeton nodosus, Potamogeton pectinatus, Vallisneria americana, andHydrilla verticillata based on accumulated degree-days.Aquatic Botamy 67:237–249.

    Article  Google Scholar 

  • Staver, L. W. 1986. Competitive interactions of submersed aquatic vegetation under varying nutrient and salinity conditions. Master's Thesis. University of Maryland, College Park, Maryland.

    Google Scholar 

  • Steindler, L., S. Beer, A. Peretzman-Shemer, C. Nyberg, andM. Ilan. 2001. Photoadaptation of zooxanthellae in the spongeCliona vastifica from the Red Sea, as measured in situ.Marine Biology 138:511–515.

    Article  Google Scholar 

  • Stevenson, J. C., L. W. Staver, andK. W. Staver. 1993. Water quality associated with survival of submersed aquatic vegetation along an estuarine gradient.Estuaries 16:346–361.

    Article  CAS  Google Scholar 

  • Stross, R. G. 1979. Density and boundary regulations of theNitella meadow in Lake George, New York.Aquatic Botany 6: 285–300.

    Article  Google Scholar 

  • Titus, J. E. andM. S. Adams. 1979. Coexistence and the comparative light relations of the submersed macrophytesMyriophyllum spicatum L. andVallisneria americana Michx.Oecologia 40:273–286.

    Article  Google Scholar 

  • Twilley, R. R. andJ. W. Barko. 1990. The growth of submersed macrophytes under experimental salinity and light conditions.Estuaries 13:311–321.

    Article  Google Scholar 

  • U.S. Environmental Protection Agency. 1979. Manual of methods for chemical analysis of water and wastes. EPA-600-4-79-020. Environmental Monitoring and Support Laboratory, Cincinnati, Ohio.

    Google Scholar 

  • Van Dijk, G. M. 1991. Survival of aPotamogeton pectinatus L. population under various light conditions in a shallow euthrophic lake (Lake Veluwe) in the Netherlands.Aquatic Botany 39:121–129.

    Article  Google Scholar 

  • Wang, D., M. C. Shannon, andC. M. Grieve. 2001. Salinity reduces radiation absorption and use efficiency in soybean.Field Crops Research 69:267–277.

    Article  Google Scholar 

  • White, A. J. andC. Critchley. 1999. Rapid light curves: A new fluorescence method to assess the state of the photosynthetic apparatus.Photosynthesis Research 59:63–72.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Moore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

French, G.T., Moore, K.A. Interactive effects of light and salinity stress on the growth, reproduction, and photosynthetic capabilities ofVallisneria americana (wild celery). Estuaries 26, 1255–1268 (2003). https://doi.org/10.1007/BF02803628

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803628

Keywords