Abstract
We construct an incomplete 3-c.e. enumeration degree which is maximal among then-c.e. enumeration degrees for everyn with 3≤n≤ω. Consequently then-c.e. enumeration degrees are not dense for any suchn. We show also that no lown-c.e. e-degree can be maximal among then-c.e. e-degrees, for 2≤n≤ω.
Similar content being viewed by others
References
M. M. Arslanov,Open questions about the n-c.e. degrees, inComputability Theory and Its Applications: Current Trends and Open Problems (M. Lerman P. Cholak, S. Lempp and R. A. Shore, eds.), Contemporary Mathematics257 (2000), 15–22.
M. M. Arslanov, I. Kalimullin and A. Sorbi,Density results in the Δ2/0e-degrees, Archive for Mathematical Logic40 (2001), 597–614.
W. C. Calhoun and T. A. Slaman,The Π2/0enumeration degrees are not dense, Journal of Symbolic Logic61 (1996), 1364–1379.
S. B. Cooper,Partial degrees and the density problem, Journal of Symbolic Logic47 (1982), 854–859.
S. B. Cooper,Partial degrees and the density problem. II. The enumeration degrees of the Σ2 sets are dense, Journal of Symbolic Logic49 (1984), 503–513.
S. B. Cooper,Enumeration reducibility, nondeterministic computations and relative computability of partial functions, inRecursion Theory Week, Oberwolfach 1989 (K. Ambos-Spies, G. Müller and Gerald E. Sacks, eds.), Lecture Notes in Mathematics1432, Springer-Verlag, Heidelberg, 1990, pp. 57–110.
S. B. Cooper, L. Harrington, A. H. Lachlan, S. Lempp and R. I. Soare,The d.r.e. degrees are not dense, Annals of Pure and Applied Logic55 (1991), 125–151.
R. L. Epstein, R. Haas and R. L. Kramer,Hierarchies of sets and degrees below 0′, inLogic Year 1979–80, Lecture Notes in Mathematics859, Springer-Verlag, Heidelberg, 1981, pp. 32–48.
Yu. L. Ershov,A hierarchy of sets, I, Algebra i Logika7 (1968), 47–74; English Translation: Consultants Bureau, New York, pp. 25–43.
Yu. L. Ershov,A hierarchy of sets, II, Algebra i Logika7 (1968.), 15–47; English Translation, Consultants Bureau, New York, pp. 212–232.
Yu. L. Ershov,A hierarchy of sets, III, Algebra i Logika9(1) (1970), 34–51; English Translation: Consultants Bureau, New York, pp. 20–31.
R. M. Friedberg and H. Rogers, Jr,Reducibility and completeness for sets of integers, Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik5 (1959), 117–125.
L. Gutteridge,Some Results on Enumeration Reducibility, PhD thesis, Simon Fraser University, 1971.
I. Kalimullin,Splitting properties of n-c. e. enumeration degrees, Journal of Symbolic Logic67 (2002), 537–546.
A. H. Lachlan and R. A. Shore,The n-rea enumeration degrees are dense, Archive for Mathematical Logic31 (1992), 277–285.
K. McEvoy and S. B. Cooper,On minimal pairs of enumeration degrees, Journal of Symbolic Logic50 (1985), 983–1001.
J. Myhill,A note on degrees of partial functions, Proceedings of the American Mathematical Society12 (1961), 519–521.
H. Putnam,Trial and error predicates and the solution to a problem of Mostowski, Journal of Symbolic Logic30 (1965), 49–57.
H. Rogers, Jr,Computing degrees of unsolvability, Mathematische Annalen138 (1959), 125–140.
H. Rogers, Jr,Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 1967.
G. E. Sacks,A minimal degree below 0′, Bulletin of the American Mathematical Society67 (1961), 416–419.
G. E. Sacks,The recursively enumerable degrees are dense, Annals of Mathematics80 (1964), 300–312.
C. Spector,On the degrees of recursive unsolvability, Annals of Mathematics64 (1956), 581–592.
Author information
Authors and Affiliations
Additional information
The first two authors were partially supported by EPSRC Research Grant “Turing Definability” No. GR/M 91419 (UK), and the second author by NSF grant No. 69973048 and by NSF major grant No. 19931020 (P. R. China), and by an INDAM visiting professorship at the University of Siena. The fourth author was partially supported as a visiting scholar by the University of Siena. The first three authors were funded by the INTAS-RFBR joint projectComputability and Models, no. 972-139. The fourth authors would like to thank Marat Arslanov for useful discussions.
Rights and permissions
About this article
Cite this article
Cooper, S.B., Li, A., Sorbi, A. et al. There exists a maximal 3-C.E. enumeration degree. Isr. J. Math. 137, 285–320 (2003). https://doi.org/10.1007/BF02785966
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02785966