Abstract
Modal counterparts of intermediate predicate logics will be studied by means of algebraic devise. Our main tool will be a construction of algebraic semantics for modal logics from algebraic frames for predicate logics. Uncountably many examples of modal counterparts of intermediate predicate logics will be given.
Similar content being viewed by others
References
R. A. Bull,MIPC as the formalization of an intuitionist concept of modality,Journal of Symbolic Logic 31(1966), pp. 609–616.
S. Burris andH. P. Sankappanavar,A Course in Universal Algebra, Graduate Texts in Mathematics 78, Springer-Verlag, New York-Heidelberg-Berlin, 1981.
K. Došen,Models for stronger normal intuitionistic modal logics,Studia Logica 44(1985), pp. 50–61.
J. M. Font,Implication and deducation in some intuitionistic modal logics,Reports on Mathematical Logic 17(1984), pp. 27–38.
J. M. Font,Modality and possibility in some intuitionistic modal logics,Notre Dame Journal of Formal Logic 27(1986), pp. 533–546.
L. Löwenheim,Über Möglichkeiten im Relativkalkül,Mathematische Annalen 76(1915), pp. 445–470.
H. Ono,A study of intermediate predicate logics,Publications of the Research Institute for Mathematical Sciences, Kyoto University 8(1972), pp. 619–649.
H. Ono,On some intuitionistic modal logics,Publications of the Research Institute for Mathematical Sciences, Kyoto University 13(1977), pp. 687–722.
H. Ono,Some problems in intermediate predicate logics,Reports on Mathematical Logic 21(1987), pp. 55–67.
H. Ono andN.-Y. Suzuki,Relations between intuitionistic modal logics and intermediate predicate logics, to appear inReports on Mathematical Logic 22(1989).
H. Rasiowa,An Algebraic Approach to Non-Classical Logics, Studies in Logic and the Foundations of Mathematics, 78, North-Holland Publishing Company, Amsterdam-London, 1974.
M. Wajsberg,Ein erweiterter Klassenkalkül,Monatshefte für Mathematik und Physik 40(1933), pp. 113–126. English translation:An extended class calculus, in M. Wajsberg,Logical Works, edited by S. J. Surma, Ossolineum 1977, pp. 50–61.
Author information
Authors and Affiliations
Additional information
Dedicated to Prof. T. Umezawa on his 60th birthday
Rights and permissions
About this article
Cite this article
Suzuki, NY. An algebraic approach to intuitionistic modal logics in connection with intermediate predicate logics. Stud Logica 48, 141–155 (1989). https://doi.org/10.1007/BF02770508
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02770508