Summary
IfS andS′ are products of γ matrices containing an odd number of γμ (μ=0, 1, 2, 3) and any number of γö, and if γα ...γ α is the relativistic scalar product, then Tr [γα S] Tr [γαS′] = 2 Tr [(S +S R )S′], whereS R is obtained fromS by reversing the order of allγ matrices.
Riassunto
SeS edS′ sono prodotti di matrici γ contenenti un numero dispari di γμ (μ = 0, 1, 2, 3) ed un numero qualunque di γ5, e seγ α ...γ α è il prodotto scalare relativistico, allora Tr [γα S] Tr [γ α S′] = 2 Tr [(S +S R )S′], in cuiS R si ottiene daS invertendo l’ordine di tutte le matrici γ.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
S. S. Schweber:An Introduction to Relativistic Quantum Field Theory (1961), chapt. 4.
J. S. E. Chisholm:Thesis (Cambridge, 1952);E. R. Caianiello andS. Fubini:Nuovo Cimento, 9, 1218 (1952).
J. S. E. Chisholm:Proc. Camb. Phil. Soc.,48, 2, 300 (1952).
Author information
Authors and Affiliations
Additional information
On leave of absence from the School of Mathematics Trinity College, Dublin
About this article
Cite this article
Chisholm, J.S.R. Relativistic scalar products of γ matrices. Nuovo Cim 30, 426–428 (1963). https://doi.org/10.1007/BF02750778
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF02750778